ﻻ يوجد ملخص باللغة العربية
Electroweak instantons are a prediction of the Standard Model and have been studied in great detail in the past although they have not been observed. Earlier calculations of the instanton production cross section at colliders revealed that it was exponentially suppressed at low energies, but may grow large at energies (much) above the sphaleron mass. Such calculations faced difficulty in the breakdown of the instanton perturbation theory in the high-energy regime. In this paper we review the calculation for the electroweak instanton cross section using the optical theorem, including quantum effects arising from interactions in the initial state and show that this leads to an exponential suppression of the cross section at all energies, rendering the process unobservable.
The transition between the broken and unbroken phases of massive gauge theories, namely the rearrangement of longitudinal and Goldstone degrees of freedom that occurs at high energy, is not manifestly smooth in the standard formalism. The lack of smo
The recent MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss different ways to estimate the mass of the electroweak monopole. We first present a scaling argum
We present an effective action for the electroweak sector of the Standard Model valid for the calculation of scattering amplitudes in the high energy (Regge) limit. Gauge invariant Wilson lines are introduced to describe reggeized degrees of freedom
We review the evolution of the studies of diffractive processes in the strong interaction over the last 60 years. First, we briefly outline the early developments of the theory based on analyticity and unitarity of the S-matrix, including the derivat
It is shown that hadron abundances in high energy e+e-, pp and p{bar p} collisions, calculated by assuming that particles originate in hadron gas fireballs at thermal and partial chemical equilibrium, are in very good agreement with the data. The fre