ﻻ يوجد ملخص باللغة العربية
The transition between the broken and unbroken phases of massive gauge theories, namely the rearrangement of longitudinal and Goldstone degrees of freedom that occurs at high energy, is not manifestly smooth in the standard formalism. The lack of smoothness concretely shows up as an anomalous growth with energy of the longitudinal polarization vectors, as they emerge in Feynman rules both for real on-shell external particles and for virtual particles from the decomposition of the gauge field propagator. This makes the characterization of Feynman amplitudes in the high-energy limit quite cumbersome, which in turn poses peculiar challenges in the study of Electroweak processes at energies much above the Electroweak scale. We develop a Lorentz-covariant formalism where polarization vectors are well-behaved and, consequently, energy power-counting is manifest at the level of individual Feynman diagrams. This allows us to prove the validity of the Effective W Approximation and, more generally, the factorization of collinear emissions and to compute the corresponding splitting functions at the tree-level order. Our formalism applies at all orders in perturbation theory, for arbitrary gauge groups and generic linear gauge-fixing functionals. It can be used to simplify Standard Model loop calculations by performing the high-energy expansion directly on the Feynman diagrams. This is illustrated by computing the radiative corrections to the decay of the top quark.
Electroweak instantons are a prediction of the Standard Model and have been studied in great detail in the past although they have not been observed. Earlier calculations of the instanton production cross section at colliders revealed that it was exp
The recent MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss different ways to estimate the mass of the electroweak monopole. We first present a scaling argum
We present an effective action for the electroweak sector of the Standard Model valid for the calculation of scattering amplitudes in the high energy (Regge) limit. Gauge invariant Wilson lines are introduced to describe reggeized degrees of freedom
According to the Goldstone theorem a scalar theory with a spontaneously broken global symmetry contains strictly massless states. In this letter we identify a loophole in the current-algebra proof of the theorem. Therefore, the question whether in mo
The clockwork mechanism has recently been proposed as a natural way to generate hierarchies among parameters in quantum field theories. The mechanism is characterized by a very specific pattern of spontaneous and explicit symmetry breaking, and the p