ترغب بنشر مسار تعليمي؟ اضغط هنا

Goldstone Equivalence and High Energy Electroweak Physics

357   0   0.0 ( 0 )
 نشر من قبل Gabriel Cuomo
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transition between the broken and unbroken phases of massive gauge theories, namely the rearrangement of longitudinal and Goldstone degrees of freedom that occurs at high energy, is not manifestly smooth in the standard formalism. The lack of smoothness concretely shows up as an anomalous growth with energy of the longitudinal polarization vectors, as they emerge in Feynman rules both for real on-shell external particles and for virtual particles from the decomposition of the gauge field propagator. This makes the characterization of Feynman amplitudes in the high-energy limit quite cumbersome, which in turn poses peculiar challenges in the study of Electroweak processes at energies much above the Electroweak scale. We develop a Lorentz-covariant formalism where polarization vectors are well-behaved and, consequently, energy power-counting is manifest at the level of individual Feynman diagrams. This allows us to prove the validity of the Effective W Approximation and, more generally, the factorization of collinear emissions and to compute the corresponding splitting functions at the tree-level order. Our formalism applies at all orders in perturbation theory, for arbitrary gauge groups and generic linear gauge-fixing functionals. It can be used to simplify Standard Model loop calculations by performing the high-energy expansion directly on the Feynman diagrams. This is illustrated by computing the radiative corrections to the decay of the top quark.

قيم البحث

اقرأ أيضاً

Electroweak instantons are a prediction of the Standard Model and have been studied in great detail in the past although they have not been observed. Earlier calculations of the instanton production cross section at colliders revealed that it was exp onentially suppressed at low energies, but may grow large at energies (much) above the sphaleron mass. Such calculations faced difficulty in the breakdown of the instanton perturbation theory in the high-energy regime. In this paper we review the calculation for the electroweak instanton cross section using the optical theorem, including quantum effects arising from interactions in the initial state and show that this leads to an exponential suppression of the cross section at all energies, rendering the process unobservable.
79 - Y. M. Cho , Kyoungtae Kim , 2013
The recent MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss different ways to estimate the mass of the electroweak monopole. We first present a scaling argum ent which indicates that the mass of the electroweak monopole to be around 4 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strengths of the electromagnetic interaction of $W$-boson in the standard model. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC.
We present an effective action for the electroweak sector of the Standard Model valid for the calculation of scattering amplitudes in the high energy (Regge) limit. Gauge invariant Wilson lines are introduced to describe reggeized degrees of freedom whose interactions are generated by effective emission vertices. From this approach previous results at leading logarithmic accuracy for electroweak boson Regge trajectories are reproduced together with the corresponding interaction kernels. The proposed framework lays the path for calculations at higher orders in perturbation theory.
According to the Goldstone theorem a scalar theory with a spontaneously broken global symmetry contains strictly massless states. In this letter we identify a loophole in the current-algebra proof of the theorem. Therefore, the question whether in mo dels with Mexican hat potential the tangential excitations are strictly massless or are just almost massless as compared to the radial ones remains open. We also argue that mass of the tangential excitations approaches zero even if the symmetry is not spontaneously broken but a combination of the field components invariant under the symmetry transformations acquires a large vacuum expectation value.
The clockwork mechanism has recently been proposed as a natural way to generate hierarchies among parameters in quantum field theories. The mechanism is characterized by a very specific pattern of spontaneous and explicit symmetry breaking, and the p resence of new light states referred to as `gears. In this paper we begin by investigating the self-interactions of these gears in a scalar clockwork model and find a parity-like selection rule at all orders in the fields. We then proceed to investigate how the clockwork mechanism can be realized in 5D linear dilaton models from the spontaneous symmetry breaking of a complex bulk scalar field. We also discuss how the clockwork mechanism is manifest in the scalar components of 5D gauge theories in the linear dilaton model, and build their 4D deconstructed analogue. Finally we discuss attempts at building both 4D and 5D realizations of a non-abelian scalar clockwork mechanism, where in the latter we consider scenarios in which the Goldstone bosons arise from 5D scalar and 5D gauge fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا