We present an effective action for the electroweak sector of the Standard Model valid for the calculation of scattering amplitudes in the high energy (Regge) limit. Gauge invariant Wilson lines are introduced to describe reggeized degrees of freedom whose interactions are generated by effective emission vertices. From this approach previous results at leading logarithmic accuracy for electroweak boson Regge trajectories are reproduced together with the corresponding interaction kernels. The proposed framework lays the path for calculations at higher orders in perturbation theory.
We apply on-shell methods to the bottom-up construction of electroweak amplitudes, allowing for both renormalizable and non-renormalizable interactions. We use the little-group covariant massive-spinor formalism, and flesh out some of its details alo
ng the way. Thanks to the compact form of the resulting amplitudes, many of their properties, and in particular the constraints of perturbative unitarity, are easily seen in this formalism. Our approach is purely bottom-up, assuming just the standard-model electroweak spectrum as well as the conservation of electric charge and fermion number. The most general massive three-point amplitudes consistent with these symmetries are derived and studied in detail, as the primary building blocks for the construction of scattering amplitudes. We employ a simple argument, based on tree-level unitarity of four-point amplitudes, to identify the three-point amplitudes that are non-renormalizable at tree level. This bottom-up analysis remarkably reproduces many low-energy relations implied by electroweak symmetry through the standard-model Higgs mechanism and beyond it. We then discuss four-point amplitudes. The gluing of three-point amplitudes into four-point amplitudes in the massive spinor helicity formalism is clarified. As an example, we work out the $psi^c psi Zh$ amplitude, including also the non-factorizable part. The latter is an all-order expression in the effective-field-theory expansion. Further constraints on the couplings are obtained by requiring perturbative unitarity. In the $psi^c psi Zh$ example, one for instance obtains the renormalizable-level relations between vector and fermion masses and gauge and Yukawa couplings. We supplement our bottom-up derivations with a matching of three- and four-point amplitude coefficients onto the standard-model effective field theory (SMEFT) in the broken electroweak phase.
We establish the non-perturbative validity of the gauge anomaly cancellation condition in an effective electroweak theory of massless fermions with finite momentum cut-off and Fermi interaction. The requirement that the current is conserved up to ter
ms smaller than the energy divided by the cut-off scale, which is the natural condition as gauge invariance is only emerging, produces the same constraint on charges as in the Standard Model. The result holds at a non-perturbative level as the functional integrals are expressed by convergent power series expansions and are analytic in a finite domain.
We compute the one-loop anomalous dimensions of the low-energy effective Lagrangian below the electroweak scale, up to terms of dimension six. The theory has 70 dimension-five and 3631 dimension-six Hermitian operators that preserve baryon and lepton
number, as well as additional operators that violate baryon number and lepton number. The renormalization group equations for the quark and lepton masses and the QCD and QED gauge couplings are modified by dimension-five and dimension-six operator contributions. We compute the renormalization group equations from one insertion of dimension-five and dimension-six operators, as well as two insertions of dimension-five operators, to all terms of dimension less than or equal to six. The use of the equations of motion to eliminate operators can be ambiguous, and we show how to resolve this ambiguity by a careful use of field redefinitions.
In this work we investigate the interaction between spin-zero and spin-one monopoles by making use of an effective field theory based on two-body and four-body interaction parts. In particular, we analyze the formation of bound state of monopole-anti
monopole (i.e. monopolium). The magnetic-charge conjugation symmetry is studied in analogy to the usual charge conjugation to define a particle basis, for which we find bound-state solutions with relatively small binding energies and which allows us to identify the bounds on the parameters in the effective Lagrangians. Estimations of their masses, binding energies and scattering lengths are performed as functions of monopole masses and interaction strength in a specific renormalization scheme. We also examine the general validity of the approach and the feasibility of detecting the monopolium.
In this work we apply effective field theory (EFT) to observables in quarkonium production and decay that are sensitive to soft gluon radiation, in particular measurements that are sensitive to small transverse momentum. Within the EFT framework we s
tudy $chi_Q$ decay to light quarks followed by the fragmentation of those quarks to light hadrons. We derive a factorization theorem that involves transverse momentum distribution (TMD) fragmentation functions and new quarkonium TMD shape functions. We derive renormalization group equations, both in rapidity and virtuality, which are used to evolve the different terms in the factorization theorem to resum large logarithms. This theoretical framework will provide a systematic treatment of quarkonium production and decay processes in TMD sensitive measurements.
Melina Gomez Bock
,Martin Hentschinski
,
.
(2020)
.
"An effective field theory approach for electroweak interactions in the high energy limit"
.
Agustin Sabio Vera
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا