ﻻ يوجد ملخص باللغة العربية
We consider the question of estimating a real low-complexity signal (such as a sparse vector or a low-rank matrix) from the phase of complex random measurements. We show that in this phase-only compressive sensing (PO-CS) scenario, we can perfectly recover such a signal with high probability and up to global unknown amplitude if the sensing matrix is a complex Gaussian random matrix and if the number of measurements is large compared to the complexity level of the signal space. Our approach proceeds by recasting the (non-linear) PO-CS scheme as a linear compressive sensing model built from a signal normalization constraint, and a phase-consistency constraint imposing any signal estimate to match the observed phases in the measurement domain. Practically, stable and robust signal direction estimation is achieved from any instance optimal algorithm of the compressive sensing literature (such as basis pursuit denoising). This is ensured by proving that the matrix associated with this equivalent linear model satisfies with high probability the restricted isometry property under the above condition on the number of measurements. We finally observe experimentally that robust signal direction recovery is reached at about twice the number of measurements needed for signal recovery in compressive sensing.
We demonstrate that a sparse signal can be estimated from the phase of complex random measurements, in a phase-only compressive sensing (PO-CS) scenario. With high probability and up to a global unknown amplitude, we can perfectly recover such a sign
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble
In most compressive sensing problems l1 norm is used during the signal reconstruction process. In this article the use of entropy functional is proposed to approximate the l1 norm. A modified version of the entropy functional is continuous, different
Recently, it was observed that spatially-coupled LDPC code ensembles approach the Shannon capacity for a class of binary-input memoryless symmetric (BMS) channels. The fundamental reason for this was attributed to a threshold saturation phenomena der
Quantized compressive sensing (QCS) deals with the problem of coding compressive measurements of low-complexity signals with quantized, finite precision representations, i.e., a mandatory process involved in any practical sensing model. While the res