ترغب بنشر مسار تعليمي؟ اضغط هنا

Static and Dynamic Properties of Block-Copolymer Based Grafted Nanoparticles Across the Non-Ergodicity Transition

71   0   0.0 ( 0 )
 نشر من قبل Daniele Parisi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic investigation of static and dynamic properties of block copolymer micelles with crosslinked cores, representing model polymer-grafted nanoparticles, over a wide concentration range from dilute regime to an arrested (crystalline) state, by means of light and neutron scattering, complemented by linear viscoelasticity. We have followed the evolution of their scattering intensity and diffusion dynamics throughout the non-ergodicity transition and the observed results have been contrasted against appropriately coarse-grained Langevin Dynamics simulations. These stable model soft particles of the core-shell type are situated between ultrasoft stars and hard spheres, and the well-known star pair interaction potential is not appropriate to describe them. Instead, we have found that an effective brush interaction potential provides very satisfactory agreement between experiments and simulations, offering insights into the interplay of softness and dynamics in spherical colloidal suspensions.



قيم البحث

اقرأ أيضاً

We present a systematic investigation of static and dynamic properties of block copolymer micelles with crosslinked cores, representing model polymer-grafted nanoparticles, over a wide concentration range from dilute regime to an arrested (crystallin e) state, by means of light and neutron scattering, complemented by linear viscoelasticity. We have followed the evolution of their scattering intensity and diffusion dynamics throughout the non-ergodicity transition and the observed results have been contrasted against appropriately coarse-grained Langevin Dynamics simulations. These stable model soft particles of the core-shell type are situated between ultrasoft stars and hard spheres, and the well-known star pair interaction potential is not appropriate to describe them. Instead, we have found that an effective brush interaction potential provides very satisfactory agreement between experiments and simulations, offering insights into the interplay of softness and dynamics in spherical colloidal suspensions.
Polymer-grafted nanoparticles (PGNPs) can provide property profiles than cannot be obtained individually by polymers or nanoparticles (NPs). Here, we have studied the mixing--demixing transition of symmetric copolymer melts of polymer-grafted spheric al nanoparticles by means of coarse-grained molecular dynamics simulation and a theoretical mean-field model. We find that a larger size of NPs leads to higher stability for given number of grafted chains and chain length reaching a point where demixing is not possible. Most importantly, the increase in the number of grafted chains, $N_g$, can initially favour the phase separation of PGNPs, but further increase can lead to more difficult demixing. The reason is the increasing impact of an effective core that forms as the grafting density of the tethered polymer chains around the NPs increases. The range and exact values of $N_g$ where this change in behaviour takes place depends on the NP size and the chain length of the grafted polymer chains. Our study elucidates the phase behaviour of PGNPs and in particular the influence of the grafting density on the phase behaviour of the systems anticipating that it will open new doors in the understanding of these systems with implications in materials science and medicine.
122 - Franco Ferrari 2016
An extensive study of single block copolymer knots containing two kinds of monomers $A$ and $B$ is presented. The knots are in a solution and their monomers are subjected to short range interactions that can be attractive or repulsive. In view of pos sible applications in medicine and the construction of intelligent materials, it is shown that several features of copolymer knots can be tuned by changing the monomer configuration. A very fast and abrupt swelling with increasing temperature is obtained in certain multiblock copolymers, while the size and the swelling behavior at high temperatures may be controlled in diblock copolymers. Interesting new effects appear in the thermal diagrams of copolymer knots when their length is increased.
Simulations of five different coarse-grained models of symmetric diblock copolymer melts are compared to demonstrate a universal (i.e., model-independent) dependence of the free energy on the invariant degree of polymerization $overline{N}$, and to s tudy universal properties of the order-disorder transition (ODT). The ODT appears to exhibit two regimes: Systems of very long chains ($overline{N} gtrsim 10^{4}$) are well described by the Fredrickson-Helfand theory, which assumes weak segregation near the ODT. Systems of smaller but experimentally relevant values, $overline{N} lesssim 10^4$, undergo a transition between strongly segregated disordered and lamellar phases that, though universal, is not adequately described by any existing theory.
Poly(ethylene oxide)-$textit{b}$-poly(butylmethacrylate) (PEO-$textit{b}$-PBMA) copolymers have recently been identified as excellent building blocks for the synthesis of hierarchical nanoporous materials. Nevertheless, while experiments have unveile d their potential to form bicontinuous phases and vesicles, a general picture of their phase and aggregation behavior is still missing. By performing Molecular Dynamics simulations, we here apply our recent coarse-grained model of PEO-$textit{b}$-PBMA to investigate its self-assembly in water and tetrahydrofuran (THF) and unveil the occurrence of a wide spectrum of mesophases. In particular, we find that the morphological phase diagram of this ternary system incorporates bicontinuous and lamellar phases at high copolymer concentrations, and finite-size aggregates, such as dispersed sheets or disk-like aggregates, spherical vesicles and rod-like vesicles, at low copolymer concentrations. The morphology of these mesophases can be controlled by tuning the THF/water relative content, which has a striking effect on the kinetics of self-assembly as well as on the resulting equilibrium structures. Our results disclose the fascinating potential of PEO-$textit{b}$-PBMA copolymers for the templated synthesis of nanostructured materials and offer a guideline to fine-tune their properties by accurately selecting the THF/water ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا