ترغب بنشر مسار تعليمي؟ اضغط هنا

Block copolymer knots

123   0   0.0 ( 0 )
 نشر من قبل Franco Ferrari
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Franco Ferrari




اسأل ChatGPT حول البحث

An extensive study of single block copolymer knots containing two kinds of monomers $A$ and $B$ is presented. The knots are in a solution and their monomers are subjected to short range interactions that can be attractive or repulsive. In view of possible applications in medicine and the construction of intelligent materials, it is shown that several features of copolymer knots can be tuned by changing the monomer configuration. A very fast and abrupt swelling with increasing temperature is obtained in certain multiblock copolymers, while the size and the swelling behavior at high temperatures may be controlled in diblock copolymers. Interesting new effects appear in the thermal diagrams of copolymer knots when their length is increased.

قيم البحث

اقرأ أيضاً

The adsorption of a single multi-block $AB$-copolymer on a solid planar substrate is investigated by means of computer simulations and scaling analysis. It is shown that the problem can be mapped onto an effective homopolymer adsorption problem. In p articular we discuss how the critical adsorption energy and the fraction of adsorbed monomers depend on the block length $M$ of sticking monomers $A$, and on the total length $N$ of the polymer chains. Also the adsorption of the random copolymers is considered and found to be well described within the framework of the annealed approximation. For a better test of our theoretical prediction, two different Monte Carlo (MC) simulation methods were employed: a) off-lattice dynamic bead-spring model, based on the standard Metropolis algorithm (MA), and b) coarse-grained lattice model using the Pruned-enriched Rosenbluth method (PERM) which enables tests for very long chains. The findings of both methods are fully consistent and in good agreement with theoretical predictions.
Simulations of five different coarse-grained models of symmetric diblock copolymer melts are compared to demonstrate a universal (i.e., model-independent) dependence of the free energy on the invariant degree of polymerization $overline{N}$, and to s tudy universal properties of the order-disorder transition (ODT). The ODT appears to exhibit two regimes: Systems of very long chains ($overline{N} gtrsim 10^{4}$) are well described by the Fredrickson-Helfand theory, which assumes weak segregation near the ODT. Systems of smaller but experimentally relevant values, $overline{N} lesssim 10^4$, undergo a transition between strongly segregated disordered and lamellar phases that, though universal, is not adequately described by any existing theory.
Poly(ethylene oxide)-$textit{b}$-poly(butylmethacrylate) (PEO-$textit{b}$-PBMA) copolymers have recently been identified as excellent building blocks for the synthesis of hierarchical nanoporous materials. Nevertheless, while experiments have unveile d their potential to form bicontinuous phases and vesicles, a general picture of their phase and aggregation behavior is still missing. By performing Molecular Dynamics simulations, we here apply our recent coarse-grained model of PEO-$textit{b}$-PBMA to investigate its self-assembly in water and tetrahydrofuran (THF) and unveil the occurrence of a wide spectrum of mesophases. In particular, we find that the morphological phase diagram of this ternary system incorporates bicontinuous and lamellar phases at high copolymer concentrations, and finite-size aggregates, such as dispersed sheets or disk-like aggregates, spherical vesicles and rod-like vesicles, at low copolymer concentrations. The morphology of these mesophases can be controlled by tuning the THF/water relative content, which has a striking effect on the kinetics of self-assembly as well as on the resulting equilibrium structures. Our results disclose the fascinating potential of PEO-$textit{b}$-PBMA copolymers for the templated synthesis of nanostructured materials and offer a guideline to fine-tune their properties by accurately selecting the THF/water ratio.
We study the adsorption of ideal random lattice copolymers with correlations in the sequences on homogeneous substrates with two different methods: An analytical solution of the problem based on the constrained annealed approximation introduced by Mo rita in 1964 and the generating functional (GF) technique, and direct numerical simulations of lattice chains averaged over many realizations of random sequences. Both methods allow to calculate the free energy and different conformational characteristics of the adsorbed chain. The comparison of the results for random copolymers with different degree of correlations and different types of nonadsorbing monomers (neutral or repelling from the surface) shows not only qualitative but a very good quantitative agreement, especially in the cases of Bernoullian and quasi-alternating random sequences.
Semiflexible polymer models are widely used as a paradigm to understand structural phases in biomolecules including folding of proteins. Since stable knots are not so common in real proteins, the existence of stable knots in semiflexible polymers has not been explored much. Here, via extensive replica exchange Monte Carlo simulation we investigate the same for a bead-stick and a bead-spring homopolymer model that covers the whole range from flexible to stiff. We establish the fact that the presence of stable knotted phases in the phase diagram is dependent on the ratio $r_b/r_{rm{min}}$ where $r_b$ is the equilibrium bond length and $r_{rm{min}}$ is the distance for the strongest nonbonded contacts. Our results provide evidence for both models that if the ratio $r_b/r_{rm{min}}$ is outside a small window around unity then depending on the bending stiffness one always encounters stable knotted phases along with the usual frozen and bent-like structures at low temperatures. These findings prompt us to conclude that knots are generic stable phases in semiflexible polymers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا