ﻻ يوجد ملخص باللغة العربية
The Federated Learning setting has a central server coordinating the training of a model on a network of devices. One of the challenges is variable training performance when the dataset has a class imbalance. In this paper, we address this by introducing a new loss function called Fed-Focal Loss. We propose to address the class imbalance by reshaping cross-entropy loss such that it down-weights the loss assigned to well-classified examples along the lines of focal loss. Additionally, by leveraging a tunable sampling framework, we take into account selective client model contributions on the central server to further focus the detector during training and hence improve its robustness. Using a detailed experimental analysis with the VIRTUAL (Variational Federated Multi-Task Learning) approach, we demonstrate consistently superior performance in both the balanced and unbalanced scenarios for MNIST, FEMNIST, VSN and HAR benchmarks. We obtain a more than 9% (absolute percentage) improvement in the unbalanced MNIST benchmark. We further show that our technique can be adopted across multiple Federated Learning algorithms to get improvements.
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten
Generative Adversarial Networks (GANs) are typically trained to synthesize data, from images and more recently tabular data, under the assumption of directly accessible training data. Recently, federated learning (FL) is an emerging paradigm that fea
Non-intrusive load monitoring (NILM) is essential for understanding customers power consumption patterns and may find wide applications like carbon emission reduction and energy conservation. The training of NILM models requires massive load data con
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which c
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fi