ﻻ يوجد ملخص باللغة العربية
We study the average of the product of the central values of two $L$-functions of modular forms $f$ and $g$ twisted by Dirichlet characters to a large prime modulus $q$. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of $q$, and we use the theory of Deligne and Katz to estimate certain complete exponential sums in several variables and prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of $q$. When at least one of the forms $f$ and $g$ is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted $L$-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M.~Youngs asymptotic evaluation of the fourth moment of Dirichlet $L$-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums.
We prove an asymptotic formula with a power saving error term for the (pure or mixed) second moment of central values of L-functions of any two (possibly equal) fixed cusp forms f, g twisted by all primitive characters modulo q, valid for all suffici
We prove a spectral decomposition formula for averages of Zagier L-series in terms of moments of symmetric square L-functions associated to Maass and holomorphic cusp forms of levels 4, 16, 64.
We establish sharp bounds for the second moment of symmetric-square $L$-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of
We calculate certain wide moments of central values of Rankin--Selberg $L$-functions $L(piotimes Omega, 1/2)$ where $pi$ is a cuspidal automorphic representation of $mathrm{GL}_2$ over $mathbb{Q}$ and $Omega$ is a Hecke character (of conductor $1$) o
Let $qge3$ be an integer, $chi$ be a Dirichlet character modulo $q$, and $L(s,chi)$ denote the Dirichlet $L$-functions corresponding to $chi$. In this paper, we show some special function series, and give some new identities for the Dirichlet $L$-fun