ﻻ يوجد ملخص باللغة العربية
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative Gross-Pitaevskii equation. This equation has a broad range of applications in nonlinear physics, including nonlinear optics, spatiotemporal patterns formation, plasma dynamics, and Bose-Einstein condensates. We demonstrate that careful control of dissipative and non-dissipative physical mechanisms results in the self-emergence of stable (2+1)-dimensional dissipative solitons. Achieving such a regime does not require the presence of any additional dissipative nonlinearities, such a mode-locker in a laser, or inelastic scattering in a Bose-Einstein condensate. Our method allows for stable energy (or mass) harvesting by coherent localized structures, such as ultrashort laser pulses or Bose-Einstein condensates.
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e
We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transver
We develop the scheme of dispersion management (DM) for three-dimensional (3D) solitons in a multimode optical fiber. It is modeled by the parabolic confining potential acting in the transverse plane in combination with the cubic self-focusing. The D
Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultr
Dissipative solitons are remarkable localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist in nature,