ﻻ يوجد ملخص باللغة العربية
We report on the observation of various bound states of dispersion-managed (DM) solitons in a passively mode-locked Erbium-doped fiber ring laser at near zero net cavity group velocity dispersion (GVD). The generated DM solitons are characterized by their Gaussian-like spectral profile with no sidebands, which is distinct from those of the conventional solitons generated in fiber lasers with large net negative cavity GVD, of the parabolic pulses generated in fiber lasers with positive cavity GVD and negligible gain saturation and bandwidth limiting, and of the gain-guided solitons generated in fiber lasers with large positive cavity GVD. Furthermore, bound states of DM solitons with fixed soliton separations are also observed. We show that these bound solitons can function as a unit to form bound states themselves. Numerical simulations verified our experimental observations.
We develop the scheme of dispersion management (DM) for three-dimensional (3D) solitons in a multimode optical fiber. It is modeled by the parabolic confining potential acting in the transverse plane in combination with the cubic self-focusing. The D
We report on the observation of dispersion-managed (DM) dark soliton emission in a net-normal dispersion erbium-doped fiber laser. We found experimentally that dispersion management could not only reduce the pump threshold for the dark soliton format
We present what is to our knowledge the most complete 1-D numerical analysis of the evolution and the propagation dynamics of an ultrashort laser pulse in a Ti:Sapphire laser oscillator. This study confirms the dispersion managed model of mode-lockin
Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems and fall into two separate classes, that of bright solitons, formed in the anomalous group velocity dispersion regime, and `dark solitons in the normal dis
A recent communication [Opt. Commun. doi:10.1016/j.optcom.2010.06.076 (2010)] presents experimental results in which dark pulses are observed in a dispersion-managed (DM) net-anomalous dispersion fiber laser. Disagreement on the formation mechanism p