ﻻ يوجد ملخص باللغة العربية
Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible amount of study and application since their introduction by Kaufman and Mass [KM16], yet their broader combinatorial and spectral properties remain poorly understood. We develop a combinatorial characterization of the spectral structure of HD-walks on two-sided local-spectral expanders [DK17], which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization, which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips, leads to novel structural theorems such as a tight $ell_2$-characterization of edge-expansion, as well as to a new understanding of local-to-global algorithms on HDX. Towards the latter, we introduce a spectral complexity measure called Stripped Threshold Rank, and show how it can replace the (much larger) threshold rank in controlling the performance of algorithms on structured objects. Combined with a sum-of-squares proof of the former $ell_2$-characterization, we give a concrete application of this framework to algorithms for unique games on HD-walks, in many cases improving the state of the art [RBS11, ABS15] from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or of slices of the $q$-ary hypercube). Our characterization of expansion also holds an interesting connection to hardness of approximation, where an $ell_infty$-variant for the Grassmann graphs was recently used to resolve the 2-2 Games Conjecture [KMS18]. We give a reduction from a related $ell_infty$-variant to our $ell_2$-characterization, but it loses factors in the regime of interest for hardness where the gap between $ell_2$ and $ell_infty$ structure is large. Nevertheless, we open the door for further work on the use of HDX in hardness of approximation and unique games.
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this defin
We give an algorithm for solving unique games (UG) instances whenever low-degree sum-of-squares proofs certify good bounds on the small-set-expansion of the underlying constraint graph via a hypercontractive inequality. Our algorithm is in fact more
We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new construction
In this note we improve a recent result by Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi on solving the Unique Games problem on expanders. Given a $(1-varepsilon)$-satisfiable instance of Unique Games with the constraint graph $G$, our algorit
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin