ترغب بنشر مسار تعليمي؟ اضغط هنا

Boolean functions on high-dimensional expanders

225   0   0.0 ( 0 )
 نشر من قبل Yuval Filmus
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analogue of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analogue is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only $|X(k-1)|=O(n)$ points in contrast to $binom{n}{k}$ points in the $(k)$-slice (which consists of all $n$-bit strings with exactly $k$ ones). Our random-walk definition and the decomposition has the additional advantage that they extend to the more general setting of posets, which include both high-dimensional expanders and the Grassmann poset, which appears in recent works on the unique games conjecture.



قيم البحث

اقرأ أيضاً

Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible amount of study and application since their introduction by Kaufman and Mass [KM16], yet their broader combinatorial and spectral properties remain poorl y understood. We develop a combinatorial characterization of the spectral structure of HD-walks on two-sided local-spectral expanders [DK17], which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization, which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips, leads to novel structural theorems such as a tight $ell_2$-characterization of edge-expansion, as well as to a new understanding of local-to-global algorithms on HDX. Towards the latter, we introduce a spectral complexity measure called Stripped Threshold Rank, and show how it can replace the (much larger) threshold rank in controlling the performance of algorithms on structured objects. Combined with a sum-of-squares proof of the former $ell_2$-characterization, we give a concrete application of this framework to algorithms for unique games on HD-walks, in many cases improving the state of the art [RBS11, ABS15] from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or of slices of the $q$-ary hypercube). Our characterization of expansion also holds an interesting connection to hardness of approximation, where an $ell_infty$-variant for the Grassmann graphs was recently used to resolve the 2-2 Games Conjecture [KMS18]. We give a reduction from a related $ell_infty$-variant to our $ell_2$-characterization, but it loses factors in the regime of interest for hardness where the gap between $ell_2$ and $ell_infty$ structure is large. Nevertheless, we open the door for further work on the use of HDX in hardness of approximation and unique games.
We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new construction s, as well as a natural probabilistic model to sample constant degree high-dimensional expanders. In particular, we show that given an expander graph $G$, adding self loops to $G$ and taking the tensor product of the modified graph with a high-dimensional expander produces a new high-dimensional expander. Our proof of rapid mixing of high order random walks is based on the decomposable Markov chains framework introduced by Jerrum et al.
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin istic polynomial time. Our construction is based on the high-dimensional expanders devised by Lubotzky, Samuels and Vishne, known as LSV complexes or Ramanujan complexes, and our analysis is based on two notions of expansion for these complexes: cosystolic expansion, and a local isoperimetric inequality due to Gromov. Our construction offers an interesting contrast to the recent work of Alev, Jeronimo and the last author~(FOCS 2019). They showed that 3XOR instances in which the variables correspond to vertices in a high-dimensional expander are easy to solve. In contrast, in our instances the variables correspond to the edges of the complex.
We consider the problem of studying the simulation capabilities of the dynamics of arbitrary networks of finite states machines. In these models, each node of the network takes two states 0 (passive) and 1 (active). The states of the nodes are update d in parallel following a local totalistic rule, i.e., depending only on the sum of active states. Four families of totalistic rules are considered: linear or matrix defined rules (a node takes state 1 if each of its neighbours is in state 1), threshold rules (a node takes state 1 if the sum of its neighbours exceed a threshold), isolated rules (a node takes state 1 if the sum of its neighbours equals to some single number) and interval rule (a node takes state 1 if the sum of its neighbours belong to some discrete interval). We focus in studying the simulation capabilities of the dynamics of each of the latter classes. In particular, we show that totalistic automata networks governed by matrix defined rules can only implement constant functions and other matrix defined functions. In addition, we show that t by threshold rules can generate any monotone Boolean functions. Finally, we show that networks driven by isolated and the interval rules exhibit a very rich spectrum of boolean functions as they can, in fact, implement any arbitrary Boolean functions. We complement this results by studying experimentally the set of different Boolean functions generated by totalistic rules on random graphs.
We study the multiparty communication complexity of high dimensional permutations, in the Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL) who also gave a nontrivial protocol for the Exactly-n problem where thr ee players receive integer inputs and need to decide if their inputs sum to a given integer $n$. There is a considerable body of literature dealing with the same problem, where $(mathbb{N},+)$ is replaced by some other abelian group. Our work can be viewed as a far-reaching extension of this line of work. We show that the known lower bounds for that group-theoretic problem apply to all high dimensional permutations. We introduce new proof techniques that appeal to recent advances in Additive Combinatorics and Ramsey theory. We reveal new and unexpected connections between the NOF communication complexity of high dimensional permutations and a variety of well known and thoroughly studied problems in combinatorics. Previous protocols for Exactly-n all rely on the construction of large sets of integers without a 3-term arithmetic progression. No direct algorithmic protocol was previously known for the problem, and we provide the first such algorithm. This suggests new ways to significantly improve the CFL protocol. Many new open questions are presented throughout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا