ﻻ يوجد ملخص باللغة العربية
Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planetary systems a twin of the solar system. Such diversity on many scales and structural levels requires fundamental theoretical approaches. Large efforts are underway to develop individual aspects of exoplanet sciences, like exoplanet atmospheres, cloud formation, disk chemistry, planet system dynamics, mantle convection, mass loss of planetary atmospheres. The following challenges need to be addressed in tandem with observational efforts. They provide the opportunity to progress our understanding of exoplanets and their atmospheres by exploring our models as virtual laboratories to fill gaps in observational data from different instruments and missions, and taken at different instances of times: Challenge a) Building complex models based on theoretical rigour that aim to understand the interactions of atmospheric processes, to treat cloud formation and its feedback onto the gas-phase chemistry and the energy budget of the planetary atmosphere moving away from solar-system inspired parameterisations. Challenge b) Enabling cloud modelling based on fundamental physio-chemical insights in order to be applicable to the large and unexplored chemical, radiative and thermodynamical parameter range of exoplanets in the universe. Challenge b) will be explored in this chapter of the book ExoFrontiers.
Transmission spectrum surveys have suggested the ubiquity of high-altitude clouds in exoplanetary atmospheres. Theoretical studies have investigated the formation processes of the high-altitude clouds; however, cloud particles have been commonly appr
We review several aspects of the calculation of exoplanet model atmospheres in the current era, with a focus on understanding the temperature-pressure profiles of atmospheres and their emitted spectra. Most of the focus is on gas giant planets, both
Planets can emit polarized thermal radiation, just like brown dwarfs. We present calculated thermal polarization signals from hot exoplanets, using an advanced radiative transfer code that fully includes all orders of scattering by gaseous molecules
The prevalence of clouds in currently observable exoplanetary atmospheres motivates the compilation and calculation of their optical properties. First, we present a new open-source Mie scattering code known as LX-MIE, which is able to consider large
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features i