ﻻ يوجد ملخص باللغة العربية
Transmission spectrum surveys have suggested the ubiquity of high-altitude clouds in exoplanetary atmospheres. Theoretical studies have investigated the formation processes of the high-altitude clouds; however, cloud particles have been commonly approximated as compact spheres, which is not always true for solid mineral particles that likely constitute exoplanetary clouds. Here, we investigate how the porosity of cloud particles evolve in exoplanetary atmospheres and influence the cloud vertical profiles. We first construct a porosity evolution model that takes into account the fractal aggregation and the compression of cloud particle aggregates. Using a cloud microphysical model coupled with the porosity model, we demonstrate that the particle internal density can significantly decrease during the cloud formation. As a result, fluffy-aggregate clouds ascend to altitude much higher than that for compact-sphere clouds assumed so far. We also examine how the fluffy-aggregate clouds affect transmission spectra. We find that the clouds largely obscure the molecular features and produce a spectral slope originated by the scattering properties of aggregates. Finally, we compare the synthetic spectra with the observations of GJ1214 b and find that its flat spectrum could be explained if the atmospheric metallicity is sufficiently high ($ge100times$ solar) and the monomer size is sufficiently small ($r_{rm mon}<1~{rm {mu}m}$). The high-metallicity atmosphere may offer the clues to explore the gas accretion processes onto past GJ1214b.
Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planet
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features i
Atmospheric retrievals of exoplanetary transmission spectra provide important constraints on various properties such as chemical abundances, cloud/haze properties, and characteristic temperatures, at the day-night atmospheric terminator. To date, mos
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectr
Direct imaging of widely separated exoplanets from space will obtain their reflected light spectra and measure atmospheric properties. Previous calculations have shown that a change in the orbital phase would cause a spectral signal, but whether this