ﻻ يوجد ملخص باللغة العربية
We review several aspects of the calculation of exoplanet model atmospheres in the current era, with a focus on understanding the temperature-pressure profiles of atmospheres and their emitted spectra. Most of the focus is on gas giant planets, both under strong stellar irradiation and in isolation. The roles of stellar irradiation, metallicity, surface gravity, C/O ratio, interior fluxes, and cloud opacity are discussed. Connections are made to the well-studied atmospheres of brown dwarfs as well as sub-Neptunes and terrestrial planets, where appropriate. Illustrative examples of model atmosphere retrievals on a thermal emission spectrum are given and connections are made between atmospheric abundances and the predictions of planet formation models.
Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planet
Planets can emit polarized thermal radiation, just like brown dwarfs. We present calculated thermal polarization signals from hot exoplanets, using an advanced radiative transfer code that fully includes all orders of scattering by gaseous molecules
The prevalence of clouds in currently observable exoplanetary atmospheres motivates the compilation and calculation of their optical properties. First, we present a new open-source Mie scattering code known as LX-MIE, which is able to consider large
Transmission spectroscopy is an important technique to probe the atmospheres of exoplanets. With the advent of TESS and, in the future, of PLATO, more and more transiting planets around bright stars will be found and the observing time at large teles
The polarization state of starlight reflected by a planetary atmosphere uniquely reveals coverage, particle size, and composition of aerosols as well as changing cloud patterns. It is not possible to obtain a comparable level of detailed from flux-on