ﻻ يوجد ملخص باللغة العربية
There have been recent theoretic results that provide sufficient conditions for the existence of a species displaying absolute concentration robustness (ACR) in a power law kinetic (PLK) system. One such result involves the detection of ACR among networks of high deficiency by considering a lower deficiency subnetwork with ACR as a local property. In turn, this smaller subnetwork serves as a building block for the larger ACR-possessing network. Here, with this theorem as foundation, we construct an algorithm that systematically checks ACR in a PLK system. By slightly modifying the algorithm, we also provide a procedure that identifies balanced concentration robustness (BCR), a weaker form of concentration robustness than ACR, in a PLK system.
Absolute concentration robustness (ACR) is a condition wherein a species in a chemical kinetic system possesses the same value for any positive steady state the network may admit regardless of initial conditions. Thus far, results on ACR center on ch
One important question that interests those who work in chemical reaction network theory (CRNT) is this: Does the system obtained from a reaction network admit a positive equilibrium and if it does, can there be more than one within a stoichiometric
The fundamental decomposition of a chemical reaction network (also called its $mathscr{F}$-decomposition) is the set of subnetworks generated by the partition of its set of reactions into the fundamental classes introduced by Ji and Feinberg in 2011
Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which p
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure inclu