ﻻ يوجد ملخص باللغة العربية
One important question that interests those who work in chemical reaction network theory (CRNT) is this: Does the system obtained from a reaction network admit a positive equilibrium and if it does, can there be more than one within a stoichiometric class? The higher deficiency algorithm (HDA) of Ji and Feinberg provided a method of determining the multistationarity capacity of a CRN with mass action kinetics (MAK). An extension of this, called Multistationarity Algorithm (MSA), recently came into the scene tackling CRNs with power law kinetics (PLK), a kinetic system which is more general (having MAK systems as a special case). For this paper, we provide a computational approach to study the multistationarity feature of reaction networks endowed with kinetics which are non-negative linear combinations of power law functions called poly-PL kinetics (PYK). The idea is to use MSA and combine it with a transformation called STAR-MSC (i.e., $S$-invariant Termwise Addition of Reactions via Maximal Stoichiometric Coefficients) producing PLKs that are dynamically equivalent to PYKs. This leads us to being able to determinine the multistationarity capacity of a much larger class of kinetic systems. We show that if the transformed dynamically equivalent PLK system is multistationary for a stoichiometric class for a set of particular rate constants, then so is its original corresponding PYK system. Moreover, the monostationarity property of the transformed PLK system also implies the monostationarity property of the original PYK system.
The fundamental decomposition of a chemical reaction network (also called its $mathscr{F}$-decomposition) is the set of subnetworks generated by the partition of its set of reactions into the fundamental classes introduced by Ji and Feinberg in 2011
There have been recent theoretic results that provide sufficient conditions for the existence of a species displaying absolute concentration robustness (ACR) in a power law kinetic (PLK) system. One such result involves the detection of ACR among net
We provide a short supplement to the paper MAPK networks and their capacity for multistationarity due to toric steady states by Perez Millan and Turjanski. We show that the capacity for toric steady states in the three networks analyzed in that paper
A complex balanced kinetic system is absolutely complex balanced (ACB) if every positive equilibrium is complex balanced. Two results on absolute complex balancing were foundational for modern chemical reaction network theory (CRNT): in 1972, M. Fein
We study how the properties of allowing multiple positive nondegenerate equilibria (MPNE) and multiple positive linearly stable equilibria (MPSE) are inherited in chemical reaction networks (CRNs). Specifically, when is it that we can deduce that a C