ﻻ يوجد ملخص باللغة العربية
Absolute concentration robustness (ACR) is a condition wherein a species in a chemical kinetic system possesses the same value for any positive steady state the network may admit regardless of initial conditions. Thus far, results on ACR center on chemical kinetic systems with deficiency one. In this contribution, we use the idea of dynamic equivalence of chemical reaction networks to derive novel results that guarantee ACR for some classes of power law kinetic systems with deficiency zero. Furthermore, using network decomposition, we identify ACR in higher deficiency networks (i.e. deficiency $geq$ 2) by considering the presence of a low deficiency subnetwork with ACR. Network decomposition also enabled us to recognize and define a weaker form of concentration robustness than ACR, which we named as `balanced concentration robustness. Finally, we also discuss and emphasize our view of ACR as a primarily kinetic character rather than a condition that arises from structural sources.
There have been recent theoretic results that provide sufficient conditions for the existence of a species displaying absolute concentration robustness (ACR) in a power law kinetic (PLK) system. One such result involves the detection of ACR among net
The fundamental decomposition of a chemical reaction network (also called its $mathscr{F}$-decomposition) is the set of subnetworks generated by the partition of its set of reactions into the fundamental classes introduced by Ji and Feinberg in 2011
Persistence and permanence are properties of dynamical systems that describe the long-term behavior of the solutions, and in particular specify whether positive solutions approach the boundary of the positive orthant. Mass-action systems (or more gen
A persistent dynamical system in $mathbb{R}^d_{> 0}$ is one whose solutions have positive lower bounds for large $t$, while a permanent dynamical system in $mathbb{R}^d_{> 0}$ is one whose solutions have uniform upper and lower bounds for large $t$.
A complex balanced kinetic system is absolutely complex balanced (ACB) if every positive equilibrium is complex balanced. Two results on absolute complex balancing were foundational for modern chemical reaction network theory (CRNT): in 1972, M. Fein