ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Gap Time Reversal Symmetry Breaking Superconductivity in Non-Centrosymmetric LaNiC2

79   0   0.0 ( 0 )
 نشر من قبل Jeff E. Sonier
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a $mu$SR investigation of a non-centrosymmetric superconductor (LaNiC$_2$) in single crystal form. Compared to previous $mu$SR studies of non-centrosymmetric superconducting polycrystalline and powder samples, the unambiguous orientation of single crystals enables a simultaneous determination of the absolute value of the magnetic penetration depth and the vortex core size from measurements that probe the magnetic field distribution in the vortex state. The magnetic field dependence of these quantities unambiguously demonstrates the presence of two nodeless superconducting energy gaps. In addition, we detect weak internal magnetic fields in the superconducting phase, confirming earlier $mu$SR evidence for a time-reversal symmetry breaking superconducting state. Our results suggest that Cooper pairing in LaNiC$_2$ is characterized by the same interorbital equal-spin pairing model introduced to describe the pairing state in the centrosymmetric superconductor LaNiGa$_2$.

قيم البحث

اقرأ أيضاً

We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Trans verse-field muSR experiments, used to probe the superfluid density, suggest an s-wave character for the superconducting gap. However, zero and longitudinal-field muSR data reveal the presence of spontaneous static magnetic fields below Tc indicating that time-reversal symmetry is broken in the superconducting state and an unconventional pairing mechanism. An analysis of the pairing symmetries identifies the ground states compatible with time-reversal symmetry breaking.
101 - G.M.Luke , Y.Fudamoto , K.M.Kojima 1998
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i n this material is characterized by the breaking of time-reversal symmetry. These results, combined with other symmetry considerations, suggest that superconductivity in Sr2RuO4 is of p-wave (odd-parity) type, analogous to superfluid 3He.
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b ut their quantum excitations can mimic relativistic effects. In topological insulators, electrons have both a linear dispersion relation, the Dirac behavior, on the surface and a non-relativistic energy dispersion in the bulk. Topological phases of matter have attracted much interest, particularly broken-symmetry phases in topological insulator materials. Here, we report by Nb doping that the topological insulator Bi2Se3 can be turned into a bulk type-II superconductor while the Dirac surface dispersion in the normal state is preserved. A macroscopic magnetic ordering appears below the superconducting critical temperature of 3.2 K indicating a spontaneous spin rotation symmetry breaking of the Nb magnetic moments. Even though such a magnetic order may appear at the edge of the superconductor, it is mediated by superconductivity and presents a novel phase of matter which gives rise to a zero-field Hall effect.
The collective mode spectrum of a symmetry-breaking state, such as a superconductor, provides crucial insight into the nature of the order parameter. In this context, we present a microscopic weak-coupling theory for the collective modes of a generic multi-component time-reversal symmetry breaking superconductor, and show that fluctuations in the relative amplitude and phase of the two order parameter components are well-defined underdamped collective modes, even in the presence of nodal quasiparticles. We then demonstrate that these generalized clapping modes can be detected using a number of experimental techniques including ac electronic compressibility measurements, electron energy loss spectroscopy, microwave spectroscopy, and ultrafast THz spectroscopy. Finally, we discuss the implications of our work as a new form of collective mode spectroscopy that drastically expands the number of experimental probes capable of detecting time-reversal symmetry breaking in unconventional superconductors such as Sr$_{text{2}}$RuO$_{text{4}}$, UTe$_{text{2}}$, and moire heterostructures.
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of 3D crystals with bulk inversion symmetry. Here we report an observation of spontaneous TRS breaking in a 2D superconducting system w ithout inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce superconducting pairing of the dxy = +- idx^2y^2 orbital symmetry between the electrons in Bi. In this model the order parameter spontaneously breaks the TRS and has a non-zero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا