ترغب بنشر مسار تعليمي؟ اضغط هنا

Ca II H&K stellar activity parameter: a proxy for stellar Extreme Ultraviolet Fluxes

72   0   0.0 ( 0 )
 نشر من قبل A G Sreejith
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atmospheric escape is an important factor shaping the exoplanet population and hence drives our understanding of planet formation. Atmospheric escape from giant planets is driven primarily by the stellar X-ray and extreme-ultraviolet (EUV) radiation. Furthermore, EUV and longer wavelength UV radiation power disequilibrium chemistry in the middle and upper atmosphere. Our understanding of atmospheric escape and chemistry, therefore, depends on our knowledge of the stellar UV fluxes. While the far-ultraviolet fluxes can be observed for some stars, most of the EUV range is unobservable due to the lack of a space telescope with EUV capabilities and, for the more distant stars, to interstellar medium absorption. Thus, it becomes essential to have indirect means for inferring EUV fluxes from features observable at other wavelengths. We present here analytic functions for predicting the EUV emission of F-, G-, K-, and M-type stars from the log $R_{HK}$ activity parameter that is commonly obtained from ground-based optical observations of the Ca II H&K lines. The scaling relations are based on a collection of about 100 nearby stars with published log $R_{HK}$ and EUV flux values, where the latter are either direct measurements or inferences from high-quality far-ultraviolet (FUV) spectra. The scaling relations presented here return EUV flux values with an accuracy of about three, which is slightly lower than that of other similar methods based on FUV or X-ray measurements.

قيم البحث

اقرأ أيضاً

M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planets host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength dependent absorption cross sections that peak in the UV (900-3200 $r{A}$). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between non-contemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly-observed optical chromospheric activity indices -- H$alpha$ equivalent widths and log$_{10}$ L$_{Halpha}$/L$_{bol}$, and the Mount Wilson Ca II H&K S and R$_{HK}$ indices -- using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200-2800 $r{A}$. Our results show a correlation between UV emission line luminosity normalized to the stellar bolometric luminosity and Ca II R$_{HK}$ with standard deviations of 0.31-0.61 dex (factors of $sim$2-4) about the best-fit lines. We also find correlations between normalized UV line luminosity and H$alpha$ log$_{10}$ L$_{Halpha}$/L$_{bol}$ and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.
The emission in the near ultraviolet Ca II H & K lines is modulated by stellar magnetic activity. Although this emission, quantified via the S-index, has been serving as a prime proxy of stellar magnetic activity for several decades, many aspects of the complex relation between stellar magnetism and Ca II H & K emission are still unclear. The amount of measured Ca II H & K emission is suspected to be affected not only by the stellar intrinsic properties but also by the inclination angle of the stellar rotation axis. Until now such an inclination effect on S-index has remained largely unexplored. To fill this gap, we develop a physics-based model to calculate S-index, focusing on the Sun. Using the distributions of solar magnetic features derived from observations together with Ca II H & K spectra synthesized in non-local thermodynamic equilibrium, we validate our model by successfully reconstructing the observed variations of solar S-index over four activity cycles. Further, using the distribution of magnetic features over the visible solar disk obtained from surface flux transport simulations, we obtain S-index time series dating back to 1700 and investigate the effect of inclination on S-index variability, both on the magnetic activity cycle and the rotational timescales. We find that when going from an equatorial to a pole-on view, the amplitude of S-index variations decreases weakly on the activity cycle timescale and strongly on the rotational timescale (by about 22% and 81%, respectively, for a cycle of intermediate strength). The absolute value of S-index depends only weakly on the inclination. We provide analytical expressions that model such dependencies.
93 - K. Poppenhaeger 2017
The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplan et for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. Here I review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.
Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planets potential habitability, particularly for M dwarfs as they are prime targets for current and near-term exoplanet chara cterization efforts and atmospheric models predict that their UV radiation can produce photochemistry on habitable zone planets different than on Earth. To derive ground-based proxies for UV emission for use when Hubble Space Telescope observations are unavailable, we have assembled a sample of fifteen early-to-mid M dwarfs observed by Hubble, and compared their non-simultaneous UV and optical spectra. We find that the equivalent width of the chromospheric Ca II K line at 3933 Angstroms, when corrected for spectral type, can be used to estimate the stellar surface flux in ultraviolet emission lines, including H I Lyman alpha. In addition, we address another potential driver of habitability: energetic particle fluxes associated with flares. We present a new technique for estimating soft X-ray and >10 MeV proton flux during far-UV emission line flares (Si IV and He II) by assuming solar-like energy partitions. We analyze several flares from the M4 dwarf GJ 876 observed with Hubble and Chandra as part of the MUSCLES Treasury Survey and find that habitable zone planets orbiting GJ 876 are impacted by large Carrington-like flares with peak soft X-ray fluxes >1e-3 W m-2 and possible proton fluxes ~100-1000 pfu, approximately four orders of magnitude more frequently than modern-day Earth.
Using solar spectral irradiance measurements from the SORCE spacecraft and the F/F technique, we have estimated the radial velocity (RV) scatter induced on the Sun by stellar activity as a function of wavelength. Our goal was to evaluate the potentia l advantages of using new near-infrared (NIR) spectrographs to search for low-mass planets around bright F, G, and K stars by beating down activity effects. Unlike M dwarfs, which have higher fluxes and therefore greater RV information content in the NIR, solar-type stars are brightest at visible wavelengths, and, based solely on information content, are better suited to traditional optical RV surveys. However, we find that the F/F estimated RV noise induced by stellar activity is diminished by up to a factor of 4 in the NIR versus the visible. Observations with the upcoming future generation of NIR instruments can be a valuable addition to the search for low-mass planets around bright FGK stars in reducing the amount of stellar noise affecting RV measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا