ﻻ يوجد ملخص باللغة العربية
The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. Here I review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.
We introduce two new features to REBOUNDx, an extended library for the N-body integrator REBOUND. The first is a convenient parameter interpolator for coupling different physics and integrators using numerical splitting schemes. The second implements
We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented
Long-term stellar activity variations can affect the detectability of long-period and Earth-analogue extrasolar planets. We have, for 54 stars, analysed the long-term trend of five activity indicators: log$R_mathrm{{HK}}$, the cross-correlation funct
Turbulent friction in convective regions in stars and planets is one of the key physical mechanisms that drive the dissipation of the kinetic energy of tidal flows in their interiors and the evolution of their systems. This friction acts both on the
2MASSJ05352184-0546085 (2M0535-05) is the only known eclipsing brown dwarf (BD) binary, and so may serve as an important benchmark for models of BD formation and evolution. However, theoretical predictions of the systems properties seem inconsistent