ترغب بنشر مسار تعليمي؟ اضغط هنا

The MUSCLES Treasury Survey IV: Scaling Relations for Ultraviolet, Ca II K, and Energetic Particle Fluxes from M Dwarfs

72   0   0.0 ( 0 )
 نشر من قبل Allison Youngblood
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planets potential habitability, particularly for M dwarfs as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemistry on habitable zone planets different than on Earth. To derive ground-based proxies for UV emission for use when Hubble Space Telescope observations are unavailable, we have assembled a sample of fifteen early-to-mid M dwarfs observed by Hubble, and compared their non-simultaneous UV and optical spectra. We find that the equivalent width of the chromospheric Ca II K line at 3933 Angstroms, when corrected for spectral type, can be used to estimate the stellar surface flux in ultraviolet emission lines, including H I Lyman alpha. In addition, we address another potential driver of habitability: energetic particle fluxes associated with flares. We present a new technique for estimating soft X-ray and >10 MeV proton flux during far-UV emission line flares (Si IV and He II) by assuming solar-like energy partitions. We analyze several flares from the M4 dwarf GJ 876 observed with Hubble and Chandra as part of the MUSCLES Treasury Survey and find that habitable zone planets orbiting GJ 876 are impacted by large Carrington-like flares with peak soft X-ray fluxes >1e-3 W m-2 and possible proton fluxes ~100-1000 pfu, approximately four orders of magnitude more frequently than modern-day Earth.

قيم البحث

اقرأ أيضاً

The ultraviolet (UV) spectral energy distributions of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux o f the Lyman alpha line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar HI absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES HST Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyman alpha and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyman alpha profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV spectral energy distribution from the intrinsic Lyman alpha flux in ~100 {AA} bins from 100-1170 {AA}. The reconstructed Lyman alpha profiles have 300 km/s broad cores, while >1% of the total intrinsic Lyman alpha flux is measured in extended wings between 300 km/s to 1200 km/s. The Lyman alpha surface flux positively correlates with the MgII surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyman alpha surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present HI column density measurements for 10 new sightlines through the local interstellar medium.
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planets host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength dependent absorption cross sections that peak in the UV (900-3200 $r{A}$). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between non-contemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly-observed optical chromospheric activity indices -- H$alpha$ equivalent widths and log$_{10}$ L$_{Halpha}$/L$_{bol}$, and the Mount Wilson Ca II H&K S and R$_{HK}$ indices -- using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200-2800 $r{A}$. Our results show a correlation between UV emission line luminosity normalized to the stellar bolometric luminosity and Ca II R$_{HK}$ with standard deviations of 0.31-0.61 dex (factors of $sim$2-4) about the best-fit lines. We also find correlations between normalized UV line luminosity and H$alpha$ log$_{10}$ L$_{Halpha}$/L$_{bol}$ and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available.
Atmospheric escape is an important factor shaping the exoplanet population and hence drives our understanding of planet formation. Atmospheric escape from giant planets is driven primarily by the stellar X-ray and extreme-ultraviolet (EUV) radiation. Furthermore, EUV and longer wavelength UV radiation power disequilibrium chemistry in the middle and upper atmosphere. Our understanding of atmospheric escape and chemistry, therefore, depends on our knowledge of the stellar UV fluxes. While the far-ultraviolet fluxes can be observed for some stars, most of the EUV range is unobservable due to the lack of a space telescope with EUV capabilities and, for the more distant stars, to interstellar medium absorption. Thus, it becomes essential to have indirect means for inferring EUV fluxes from features observable at other wavelengths. We present here analytic functions for predicting the EUV emission of F-, G-, K-, and M-type stars from the log $R_{HK}$ activity parameter that is commonly obtained from ground-based optical observations of the Ca II H&K lines. The scaling relations are based on a collection of about 100 nearby stars with published log $R_{HK}$ and EUV flux values, where the latter are either direct measurements or inferences from high-quality far-ultraviolet (FUV) spectra. The scaling relations presented here return EUV flux values with an accuracy of about three, which is slightly lower than that of other similar methods based on FUV or X-ray measurements.
Radial-velocity (RV) jitter caused by stellar magnetic activity is an important factor in state-of-the-art exoplanet discovery surveys such as CARMENES. Stellar rotation, along with heterogeneities in the photosphere and chromosphere caused by activi ty, can result in false-positive planet detections. Hence, it is necessary to determine the stellar rotation period and compare it to any putative planetary RV signature. Long-term measurements of activity indicators such as the chromospheric emission in the Ca II H&K lines enable the identification of magnetic activity cycles. In order to determine stellar rotation periods and study the long-term behavior of magnetic activity of the CARMENES guaranteed time observations (GTO) sample, it is advantageous to extract Ca II H&K time series from archival data, since the CARMENES spectrograph does not cover the blue range of the stellar spectrum containing the Ca II H&K lines. We have assembled a catalog of 11634 archival spectra of 186 M dwarfs acquired by seven different instruments covering the Ca II H&K regime: ESPADONS, FEROS, HARPS, HIRES, NARVAL, TIGRE, and UVES. The relative chromospheric flux in these lines was directly extracted from the spectra by rectification with PHOENIX synthetic spectra via narrow passbands around the Ca ii H&K line cores. The combination of archival spectra from various instruments results in time series for 186 stars from the CARMENES GTO sample. As an example of the use of the catalog, we report the tentative discovery of three previously unknown activity cycles of M dwarfs. We conclude that the method of extracting Ca II H&K fluxes with the use of model spectra yields consistent results for different instruments and that the compilation of this catalog will enable the analysis of long-term activity time series for a large number of M dwarfs.
M dwarfs are prime targets for planet search programs, particularly of those focused on the detection and characterization of rocky planets in the habitable zone. Understanding their magnetic activity is important because it affects our ability to de tect small planets, and it plays a key role in the characterization of the stellar environment. We analyze observations of the Ca II H&K and H{alpha} lines as diagnostics of chromospheric activity for low-activity early-type M dwarfs. We analyze the time series of spectra of 71 early-type M dwarfs collected for the HADES project for planet search purposes. The HARPS-N spectra provide simultaneously the H&K doublet and the H{alpha} line. We develop a reduction scheme able to correct the HARPS-N spectra for instrumental and atmospheric effects, and to provide flux-calibrated spectra in units of flux at the stellar surface. The H&K and H{alpha} fluxes are compared with each other, and their variability is analyzed. We find that the H and K flux excesses are strongly correlated with each other, while the H{alpha} flux excess is generally less correlated with the H&K doublet. We also find that H{alpha} emission does not increase monotonically with the H&K line flux, showing some absorption before being filled in by chromospheric emission when H&K activity increases. Analyzing the time variability of the emission fluxes, we derive a tentative estimate of the rotation period (of the order of a few tens of days) for some of the program stars, and the typical lifetime of chromospheric active regions (a few stellar rotations). Our results are in good agreement with previous studies. In particular, we find evidence that the chromospheres of early-type M dwarfs could be characterized by different filaments coverage, affecting the formation mechanism of the H{alpha} line. We also show that chromospheric structure is likely related to spectral type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا