ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions

92   0   0.0 ( 0 )
 نشر من قبل Kartik Ahuja
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, invariant risk minimization (IRM) (Arjovsky et al.) was proposed as a promising solution to address out-of-distribution (OOD) generalization. In Ahuja et al., it was shown that solving for the Nash equilibria of a new class of ensemble-games is equivalent to solving IRM. In this work, we extend the framework in Ahuja et al. for linear regressions by projecting the ensemble-game on an $ell_{infty}$ ball. We show that such projections help achieve non-trivial OOD guarantees despite not achieving perfect invariance. For linear models with confounders, we prove that Nash equilibria of these games are closer to the ideal OOD solutions than the standard empirical risk minimization (ERM) and we also provide learning algorithms that provably converge to these Nash Equilibria. Empirical comparisons of the proposed approach with the state-of-the-art show consistent gains in achieving OOD solutions in several settings involving anti-causal variables and confounders.


قيم البحث

اقرأ أيضاً

In this paper, we present a method for finding approximate Nash equilibria in a broad class of reachability games. These games are often used to formulate both collision avoidance and goal satisfaction. Our method is computationally efficient, runnin g in real-time for scenarios involving multiple players and more than ten state dimensions. The proposed approach forms a family of increasingly exact approximations to the original game. Our results characterize the quality of these approximations and show operation in a receding horizon, minimally-invasive control context. Additionally, as a special case, our method reduces to local gradient-based optimization in the single-player (optimal control) setting, for which a wide variety of efficient algorithms exist.
In the dictionary learning (or sparse coding) problem, we are given a collection of signals (vectors in $mathbb{R}^d$), and the goal is to find a basis in which the signals have a sparse (approximate) representation. The problem has received a lot of attention in signal processing, learning, and theoretical computer science. The problem is formalized as factorizing a matrix $X (d times n)$ (whose columns are the signals) as $X = AY$, where $A$ has a prescribed number $m$ of columns (typically $m ll n$), and $Y$ has columns that are $k$-sparse (typically $k ll d$). Most of the known theoretical results involve assuming that the columns of the unknown $A$ have certain incoherence properties, and that the coefficient matrix $Y$ has random (or partly random) structure. The goal of our work is to understand what can be said in the absence of such assumptions. Can we still find $A$ and $Y$ such that $X approx AY$? We show that this is possible, if we allow violating the bounds on $m$ and $k$ by appropriate factors that depend on $k$ and the desired approximation. Our results rely on an algorithm for what we call the threshold correlation problem, which turns out to be related to hypercontractive norms of matrices. We also show that our algorithmic ideas apply to a setting in which some of the columns of $X$ are outliers, thus giving similar guarantees even in this challenging setting.
A Generative Adversarial Network (GAN) with generator $G$ trained to model the prior of images has been shown to perform better than sparsity-based regularizers in ill-posed inverse problems. Here, we propose a new method of deploying a GAN-based pri or to solve linear inverse problems using projected gradient descent (PGD). Our method learns a network-based projector for use in the PGD algorithm, eliminating expensive computation of the Jacobian of $G$. Experiments show that our approach provides a speed-up of $60text{-}80times$ over earlier GAN-based recovery methods along with better accuracy. Our main theoretical result is that if the measurement matrix is moderately conditioned on the manifold range($G$) and the projector is $delta$-approximate, then the algorithm is guaranteed to reach $O(delta)$ reconstruction error in $O(log(1/delta))$ steps in the low noise regime. Additionally, we propose a fast method to design such measurement matrices for a given $G$. Extensive experiments demonstrate the efficacy of this method by requiring $5text{-}10times$ fewer measurements than random Gaussian measurement matrices for comparable recovery performance. Because the learning of the GAN and projector is decoupled from the measurement operator, our GAN-based projector and recovery algorithm are applicable without retraining to all linear inverse problems, as confirmed by experiments on compressed sensing, super-resolution, and inpainting.
Aggregating data is fundamental to data analytics, data exploration, and OLAP. Approximate query processing (AQP) techniques are often used to accelerate computation of aggregates using samples, for which confidence intervals (CIs) are widely used to quantify the associated error. CIs used in practice fall into two categories: techniques that are tight but not correct, i.e., they yield tight intervals but only offer asymptotic guarantees, making them unreliable, or techniques that are correct but not tight, i.e., they offer rigorous guarantees, but are overly conservative, leading to confidence intervals that are too loose to be useful. In this paper, we develop a CI technique that is both correct and tighter than traditional approaches. Starting from conservative CIs, we identify two issues they often face: pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS). By developing a novel range-trimming technique for eliminating PHOS and pairing it with known CI techniques without PMA, we develop a technique for computing CIs with strong guarantees that requires fewer samples for the same width. We implement our techniques underneath a sampling-optimized in-memory column store and show how to accelerate queries involving aggregates on a real dataset with speedups of up to 124x over traditional AQP-with-guarantees and more than 1000x over exact methods.
This paper considers a networked aggregative game (NAG) where the players are distributed over a communication network. By only communicating with a subset of players, the goal of each player in the NAG is to minimize an individual cost function that depends on its own action and the aggregate of all the players actions. To this end, we design a novel distributed algorithm that jointly exploits the ideas of the consensus algorithm and the conditional projection descent. Under strongly monotone assumption on the pseudo-gradient mapping, the proposed algorithm with fixed step-sizes is proved to converge linearly to the unique Nash equilibrium of the NAG. Then the theoretical results are validated by numerical experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا