ﻻ يوجد ملخص باللغة العربية
In this paper, we present a method for finding approximate Nash equilibria in a broad class of reachability games. These games are often used to formulate both collision avoidance and goal satisfaction. Our method is computationally efficient, running in real-time for scenarios involving multiple players and more than ten state dimensions. The proposed approach forms a family of increasingly exact approximations to the original game. Our results characterize the quality of these approximations and show operation in a receding horizon, minimally-invasive control context. Additionally, as a special case, our method reduces to local gradient-based optimization in the single-player (optimal control) setting, for which a wide variety of efficient algorithms exist.
We study the class of reach-avoid dynamic games in which multiple agents interact noncooperatively, and each wishes to satisfy a distinct target condition while avoiding a failure condition. Reach-avoid games are commonly used to express safety-criti
Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is $P
Recently, invariant risk minimization (IRM) (Arjovsky et al.) was proposed as a promising solution to address out-of-distribution (OOD) generalization. In Ahuja et al., it was shown that solving for the Nash equilibria of a new class of ensemble-game
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents. We prove that when
In this paper, we study large population multi-agent reinforcement learning (RL) in the context of discrete-time linear-quadratic mean-field games (LQ-MFGs). Our setting differs from most existing work on RL for MFGs, in that we consider a non-statio