ﻻ يوجد ملخص باللغة العربية
Recently, online end-to-end ASR has gained increasing attention. However, the performance of online systems still lags far behind that of offline systems, with a large gap in quality of recognition. For specific scenarios, we can trade-off between performance and latency, and can train multiple systems with different delays to match the performance and latency requirements of various application scenarios. In this work, in contrast to trading-off between performance and latency, we envisage a single system that can match the needs of different scenarios. We propose a novel architecture, termed Universal ASR that can unify streaming and non-streaming ASR models into one system. The embedded streaming ASR model can configure different delays according to requirements to obtain real-time recognition results, while the non-streaming model is able to refresh the final recognition result for better performance. We have evaluated our approach on the public AISHELL-2 benchmark and an industrial-level 20,000-hour Mandarin speech recognition task. The experimental results show that the Universal ASR provides an efficient mechanism to integrate streaming and non-streaming models that can recognize speech quickly and accurately. On the AISHELL-2 task, Universal ASR comfortably outperforms other state-of-the-art systems.
Non-autoregressive (NAR) transformer models have achieved significantly inference speedup but at the cost of inferior accuracy compared to autoregressive (AR) models in automatic speech recognition (ASR). Most of the NAR transformers take a fixed-len
End-to-end (E2E) models have shown to outperform state-of-the-art conventional models for streaming speech recognition [1] across many dimensions, including quality (as measured by word error rate (WER)) and endpointer latency [2]. However, the model
This paper presents our modeling and architecture approaches for building a highly accurate low-latency language identification system to support multilingual spoken queries for voice assistants. A common approach to solve multilingual speech recogni
This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be bu
Continuous integrate-and-fire (CIF) based models, which use a soft and monotonic alignment mechanism, have been well applied in non-autoregressive (NAR) speech recognition and achieved competitive performance compared with other NAR methods. However,