ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary and Context Aware Training for CIF-based Non-Autoregressive End-to-end ASR

124   0   0.0 ( 0 )
 نشر من قبل Fan Yu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuous integrate-and-fire (CIF) based models, which use a soft and monotonic alignment mechanism, have been well applied in non-autoregressive (NAR) speech recognition and achieved competitive performance compared with other NAR methods. However, such an alignment learning strategy may also result in inaccurate acoustic boundary estimation and deceleration in convergence speed. To eliminate these drawbacks and improve performance further, we incorporate an additional connectionist temporal classification (CTC) based alignment loss and a contextual decoder into the CIF-based NAR model. Specifically, we use the CTC spike information to guide the leaning of acoustic boundary and adopt a new contextual decoder to capture the linguistic dependencies within a sentence in the conventional CIF model. Besides, a recently proposed Conformer architecture is also employed to model both local and global acoustic dependencies. Experiments on the open-source Mandarin corpora AISHELL-1 show that the proposed method achieves a comparable character error rate (CER) of 4.9% with only 1/24 latency compared with a state-of-the-art autoregressive (AR) Conformer model.



قيم البحث

اقرأ أيضاً

111 - Xian Shi , Pan Zhou , Wei Chen 2021
Neural architecture search (NAS) has been successfully applied to tasks like image classification and language modeling for finding efficient high-performance network architectures. In ASR field especially end-to-end ASR, the related research is stil l in its infancy. In this work, we focus on applying NAS on the most popular manually designed model: Conformer, and then propose an efficient ASR model searching method that benefits from the natural advantage of differentiable architecture search (Darts) in reducing computational overheads. We fuse Darts mutator and Conformer blocks to form a complete search space, within which a modified architecture called Darts-Conformer cell is found automatically. The entire searching process on AISHELL-1 dataset costs only 0.7 GPU days. Replacing the Conformer encoder by stacking searched cell, we get an end-to-end ASR model (named as Darts-Conformner) that outperforms the Conformer baseline by 4.7% on the open-source AISHELL-1 dataset. Besides, we verify the transferability of the architecture searched on a small dataset to a larger 2k-hour dataset. To the best of our knowledge, this is the first successful attempt to apply gradient-based architecture search in the attention-based encoder-decoder ASR model.
Recently, end-to-end (E2E) speech recognition has become popular, since it can integrate the acoustic, pronunciation and language models into a single neural network, which outperforms conventional models. Among E2E approaches, attention-based models , e.g. Transformer, have emerged as being superior. Such models have opened the door to deployment of ASR on smart devices, however they still suffer from requiring a large number of model parameters. We propose an extremely low footprint E2E ASR system for smart devices, to achieve the goal of satisfying resource constraints without sacrificing recognition accuracy. We design cross-layer weight sharing to improve parameter efficiency and further exploit model compression methods including sparsification and quantization, to reduce memory storage and boost decoding efficiency. We evaluate our approaches on the public AISHELL-1 and AISHELL-2 benchmarks. On the AISHELL-2 task, the proposed method achieves more than 10x compression (model size reduces from 248 to 24MB), at the cost of only minor performance loss (CER reduces from 6.49% to 6.92%).
Non-autoregressive (NAR) modeling has gained more and more attention in speech processing. With recent state-of-the-art attention-based automatic speech recognition (ASR) structure, NAR can realize promising real-time factor (RTF) improvement with on ly small degradation of accuracy compared to the autoregressive (AR) models. However, the recognition inference needs to wait for the completion of a full speech utterance, which limits their applications on low latency scenarios. To address this issue, we propose a novel end-to-end streaming NAR speech recognition system by combining blockwise-attention and connectionist temporal classification with mask-predict (Mask-CTC) NAR. During inference, the input audio is separated into small blocks and then processed in a blockwise streaming way. To address the insertion and deletion error at the edge of the output of each block, we apply an overlapping decoding strategy with a dynamic mapping trick that can produce more coherent sentences. Experimental results show that the proposed method improves online ASR recognition in low latency conditions compared to vanilla Mask-CTC. Moreover, it can achieve a much faster inference speed compared to the AR attention-based models. All of our codes will be publicly available at https://github.com/espnet/espnet.
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a nov el online E2E-ASR system by using Streaming Chunk-Aware Multihead Attention(SCAMA) and a latency control memory equipped self-attention network (LC-SAN-M). LC-SAN-M uses chunk-level input to control the latency of encoder. As to SCAMA, a jointly trained predictor is used to control the output of encoder when feeding to decoder, which enables decoder to generate output in streaming manner. Experimental results on the open 170-hour AISHELL-1 and an industrial-level 20000-hour Mandarin speech recognition tasks show that our approach can significantly outperform the MoChA-based baseline system under comparable setup. On the AISHELL-1 task, our proposed method achieves a character error rate (CER) of 7.39%, to the best of our knowledge, which is the best published performance for online ASR.
Discriminative models for source separation have recently been shown to produce impressive results. However, when operating on sources outside of the training set, these models can not perform as well and are cumbersome to update. Classical methods l ike Non-negative Matrix Factorization (NMF) provide modular approaches to source separation that can be easily updated to adapt to new mixture scenarios. In this paper, we generalize NMF to develop end-to-end non-negative auto-encoders and demonstrate how they can be used for source separation. Our experiments indicate that these models deliver comparable separation performance to discriminative approaches, while retaining the modularity of NMF and the modeling flexibility of neural networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا