ﻻ يوجد ملخص باللغة العربية
Non-autoregressive (NAR) transformer models have achieved significantly inference speedup but at the cost of inferior accuracy compared to autoregressive (AR) models in automatic speech recognition (ASR). Most of the NAR transformers take a fixed-length sequence filled with MASK tokens or a redundant sequence copied from encoder states as decoder input, they cannot provide efficient target-side information thus leading to accuracy degradation. To address this problem, we propose a CTC-enhanced NAR transformer, which generates target sequence by refining predictions of the CTC module. Experimental results show that our method outperforms all previous NAR counterparts and achieves 50x faster decoding speed than a strong AR baseline with only 0.0 ~ 0.3 absolute CER degradation on Aishell-1 and Aishell-2 datasets.
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is desig
In order to evaluate the performance of the attention based neural ASR under noisy conditions, the current trend is to present hours of various noisy speech data to the model and measure the overall word/phoneme error rate (W/PER). In general, it is
Performance degradation of an Automatic Speech Recognition (ASR) system is commonly observed when the test acoustic condition is different from training. Hence, it is essential to make ASR systems robust against various environmental distortions, suc
This paper proposes a novel voice conversion (VC) method based on non-autoregressive sequence-to-sequence (NAR-S2S) models. Inspired by the great success of NAR-S2S models such as FastSpeech in text-to-speech (TTS), we extend the FastSpeech2 model fo
This paper proposes VARA-TTS, a non-autoregressive (non-AR) text-to-speech (TTS) model using a very deep Variational Autoencoder (VDVAE) with Residual Attention mechanism, which refines the textual-to-acoustic alignment layer-wisely. Hierarchical lat