ﻻ يوجد ملخص باللغة العربية
Varying only the in-plane or out-of-plane dimensions of nanostructures produces a wide range of colourful elements in metasurfaces and thin films. However, achieving shades of grey and control of colour saturation remains challenging. Here, we introduce a hybrid approach to colour generation based on the tuning of nanostructure geometry in all three dimensions. Through two-photon polymerization lithography, we systematically investigated colour generation from the simple single nanopillar geometry made of low-refractive-index material; realizing grayscale and full colour palettes with control of hue, saturation, brightness through tuning of height, diameter, and periodicity of nanopillars. Arbitrary colourful and grayscale images were painted by mapping desired prints to precisely controllable parameters during 3D printing. We extend our understanding of the scattering properties of the low-refractive-index nanopillar to demonstrate grayscale inversion and colour desaturation, with steganography at the level of single nanopillars.
A light field print (LFP) displays three-dimensional (3D) information to the naked-eye observer under ambient white light illumination. Changing perspectives of a 3D image are seen by the observer from varying angles. However, LFPs appear pixelated d
The possibility of producing polymer-bonded magnets with the aid of additive processes, such as 3D printing, opens up a multitude of new areas of application. Almost any structures and prototypes can be produced cost-effectively in small quantities.
Featured by prominent flexibility and fidelity in producing sophisticated stereoscopic structures transdimensionally, three-dimensional (3D) laser printing technique has vastly extended the toolkit for delivering diverse functional devices. Yet chira
Silicon nanoparticles possess unique size-dependent optical properties due to their strong electric and magnetic resonances in the visible range. However, their widespread application has been limited, in comparison to other (e.g. metallic) nanoparti
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatio-temporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward t