ترغب بنشر مسار تعليمي؟ اضغط هنا

Painting with Hue, Saturation, and Brightness Control by Nanoscale 3D Printing

564   0   0.0 ( 0 )
 نشر من قبل Hao Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Varying only the in-plane or out-of-plane dimensions of nanostructures produces a wide range of colourful elements in metasurfaces and thin films. However, achieving shades of grey and control of colour saturation remains challenging. Here, we introduce a hybrid approach to colour generation based on the tuning of nanostructure geometry in all three dimensions. Through two-photon polymerization lithography, we systematically investigated colour generation from the simple single nanopillar geometry made of low-refractive-index material; realizing grayscale and full colour palettes with control of hue, saturation, brightness through tuning of height, diameter, and periodicity of nanopillars. Arbitrary colourful and grayscale images were painted by mapping desired prints to precisely controllable parameters during 3D printing. We extend our understanding of the scattering properties of the low-refractive-index nanopillar to demonstrate grayscale inversion and colour desaturation, with steganography at the level of single nanopillars.

قيم البحث

اقرأ أيضاً

A light field print (LFP) displays three-dimensional (3D) information to the naked-eye observer under ambient white light illumination. Changing perspectives of a 3D image are seen by the observer from varying angles. However, LFPs appear pixelated d ue to limited resolution and misalignment between their lenses and colour pixels. A promising solution to create high-resolution LFPs is through the use of advanced nanofabrication techniques. Here, we use two-photon polymerization lithography as a one-step nanoscale 3D printer to directly fabricate LFPs out of transparent resin. This approach produces simultaneously high spatial resolution (29 - 45 {mu}m) and high angular resolution (~ 1.6 {deg}) images with smooth motion parallax across 15 {times} 15 views. Notably, the smallest colour pixel consists of only a single nanopillar (~ 300 nm diameter). Our LFP signifies a step towards hyper-realistic 3D images that can be applied in print media and security tags for high-value goods.
The possibility of producing polymer-bonded magnets with the aid of additive processes, such as 3D printing, opens up a multitude of new areas of application. Almost any structures and prototypes can be produced cost-effectively in small quantities. Extending the 3D printing process allows the manufacturing of anisotropic magnetic structures by aligning the magnetic easy axis of ferromagnetic particles inside a paste-like compound material along an external magnetic field. This is achieved by two different approaches: First, the magnetic field for aligning the particles is provided by a permanent magnet. Secondly, the 3D printing process itselfs generates an anisotropic behavior of the structures. An inexpensive and customizable end-user fused filament fabrication 3D printer is used to print the magnetic samples. The magnetical properties of different magnetic anisotropic Sr ferrite and SmFeN materials are investigated and discussed.
Featured by prominent flexibility and fidelity in producing sophisticated stereoscopic structures transdimensionally, three-dimensional (3D) laser printing technique has vastly extended the toolkit for delivering diverse functional devices. Yet chira l nanoemitters heavily resorting to artificial structures that manifest efficient emission and tightly confined light-mater interactions simultaneously remains alluring but dauntingly challenging for this technique at this moment. In this work, we assert the chiral photoluminescence is implemented from silver nanostructures of optical duality in one go via a twofold three-dimensional laser printing scheme. Such laser printing protocol allows the highly desired duality by simultaneously producing uniformly distributed fluorescent silver nanoclusters and aggregated plasmonic silver nanoparticles to tightly confine chiral interactions at the nanoscale. A helical emitter of 550 nm-helix-diameter as fabricated has seen a record-high luminescence anisotropic factor with the absolute value up to 0.58, which is two orders of magnitude greater than fluorescent chiral silver clusters. This method holds great promise for future versatile applications in chiroptical nanodevices.
Silicon nanoparticles possess unique size-dependent optical properties due to their strong electric and magnetic resonances in the visible range. However, their widespread application has been limited, in comparison to other (e.g. metallic) nanoparti cles, because their preparation on monodisperse colloids remains challenging. Exploiting the unique properties of Si nanoparticles in nano- and micro-devices calls for methods able to sort and organize them from a colloidal suspension onto specific positions of solid substrates with nanometric precision. Here, we demonstrate that surfactant-free Silicon nanoparticles of a predefined and narrow ($sigma$ < 10 nm) size range can be selectively immobilized on a substrate by optical printing from a polydisperse colloidal suspension. The size selectivity is based on differential optical forces that can be applied on nanoparticles of different sizes by tuning the light wavelength to the size-dependent magnetic dipolar resonance of the nanoparticles.
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatio-temporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward t he sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The one-dimensional spatial profile and temporal waveform of this pulse are completely coherently controlled.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا