ﻻ يوجد ملخص باللغة العربية
Featured by prominent flexibility and fidelity in producing sophisticated stereoscopic structures transdimensionally, three-dimensional (3D) laser printing technique has vastly extended the toolkit for delivering diverse functional devices. Yet chiral nanoemitters heavily resorting to artificial structures that manifest efficient emission and tightly confined light-mater interactions simultaneously remains alluring but dauntingly challenging for this technique at this moment. In this work, we assert the chiral photoluminescence is implemented from silver nanostructures of optical duality in one go via a twofold three-dimensional laser printing scheme. Such laser printing protocol allows the highly desired duality by simultaneously producing uniformly distributed fluorescent silver nanoclusters and aggregated plasmonic silver nanoparticles to tightly confine chiral interactions at the nanoscale. A helical emitter of 550 nm-helix-diameter as fabricated has seen a record-high luminescence anisotropic factor with the absolute value up to 0.58, which is two orders of magnitude greater than fluorescent chiral silver clusters. This method holds great promise for future versatile applications in chiroptical nanodevices.
We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabricati
Chirality is an intriguing property of certain molecules, materials or artificial nanostructures, which allows them to interact with the spin angular momentum of the impinging light field. Due to their chiral geometry, they can distinguish between le
A light field print (LFP) displays three-dimensional (3D) information to the naked-eye observer under ambient white light illumination. Changing perspectives of a 3D image are seen by the observer from varying angles. However, LFPs appear pixelated d
Varying only the in-plane or out-of-plane dimensions of nanostructures produces a wide range of colourful elements in metasurfaces and thin films. However, achieving shades of grey and control of colour saturation remains challenging. Here, we introd
We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.