ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative Approach to Improve Transcription Accuracy

117   0   0.0 ( 0 )
 نشر من قبل Kin Wai Cheuk
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then concatenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on three different datasets: MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our U-net contain gridlike structures (not present in the baseline model) which implies that with the presence of the reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy.

قيم البحث

اقرأ أيضاً

We present and release Omnizart, a new Python library that provides a streamlined solution to automatic music transcription (AMT). Omnizart encompasses modules that construct the life-cycle of deep learning-based AMT, and is designed for ease of use with a compact command-line interface. To the best of our knowledge, Omnizart is the first transcription toolkit which offers models covering a wide class of instruments ranging from solo, instrument ensembles, percussion instruments to vocal, as well as models for chord recognition and beat/downbeat tracking, two music information retrieval (MIR) tasks highly related to AMT.
Automatic Music Transcription has seen significant progress in recent years by training custom deep neural networks on large datasets. However, these models have required extensive domain-specific design of network architectures, input/output represe ntations, and complex decoding schemes. In this work, we show that equivalent performance can be achieved using a generic encoder-decoder Transformer with standard decoding methods. We demonstrate that the model can learn to translate spectrogram inputs directly to MIDI-like output events for several transcription tasks. This sequence-to-sequence approach simplifies transcription by jointly modeling audio features and language-like output dependencies, thus removing the need for task-specific architectures. These results point toward possibilities for creating new Music Information Retrieval models by focusing on dataset creation and labeling rather than custom model design.
Most of the current supervised automatic music transcription (AMT) models lack the ability to generalize. This means that they have trouble transcribing real-world music recordings from diverse musical genres that are not presented in the labelled tr aining data. In this paper, we propose a semi-supervised framework, ReconVAT, which solves this issue by leveraging the huge amount of available unlabelled music recordings. The proposed ReconVAT uses reconstruction loss and virtual adversarial training. When combined with existing U-net models for AMT, ReconVAT achieves competitive results on common benchmark datasets such as MAPS and MusicNet. For example, in the few-shot setting for the string part version of MusicNet, ReconVAT achieves F1-scores of 61.0% and 41.6% for the note-wise and note-with-offset-wise metrics respectively, which translates into an improvement of 22.2% and 62.5% compared to the supervised baseline model. Our proposed framework also demonstrates the potential of continual learning on new data, which could be useful in real-world applications whereby new data is constantly available.
We propose a unified model for three inter-related tasks: 1) to textit{separate} individual sound sources from a mixed music audio, 2) to textit{transcribe} each sound source to MIDI notes, and 3) totextit{ synthesize} new pieces based on the timbre of separated sources. The model is inspired by the fact that when humans listen to music, our minds can not only separate the sounds of different instruments, but also at the same time perceive high-level representations such as score and timbre. To mirror such capability computationally, we designed a pitch-timbre disentanglement module based on a popular encoder-decoder neural architecture for source separation. The key inductive biases are vector-quantization for pitch representation and pitch-transformation invariant for timbre representation. In addition, we adopted a query-by-example method to achieve textit{zero-shot} learning, i.e., the model is capable of doing source separation, transcription, and synthesis for textit{unseen} instruments. The current design focuses on audio mixtures of two monophonic instruments. Experimental results show that our model outperforms existing multi-task baselines, and the transcribed score serves as a powerful auxiliary for separation tasks.
We introduce DrummerNet, a drum transcription system that is trained in an unsupervised manner. DrummerNet does not require any ground-truth transcription and, with the data-scalability of deep neural networks, learns from a large unlabeled dataset. In DrummerNet, the target drum signal is first passed to a (trainable) transcriber, then reconstructed in a (fixed) synthesizer according to the transcription estimate. By training the system to minimize the distance between the input and the output audio signals, the transcriber learns to transcribe without ground truth transcription. Our experiment shows that DrummerNet performs favorably compared to many other recent drum transcription systems, both supervised and unsupervised.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا