ﻻ يوجد ملخص باللغة العربية
We introduce DrummerNet, a drum transcription system that is trained in an unsupervised manner. DrummerNet does not require any ground-truth transcription and, with the data-scalability of deep neural networks, learns from a large unlabeled dataset. In DrummerNet, the target drum signal is first passed to a (trainable) transcriber, then reconstructed in a (fixed) synthesizer according to the transcription estimate. By training the system to minimize the distance between the input and the output audio signals, the transcriber learns to transcribe without ground truth transcription. Our experiment shows that DrummerNet performs favorably compared to many other recent drum transcription systems, both supervised and unsupervised.
We present and release Omnizart, a new Python library that provides a streamlined solution to automatic music transcription (AMT). Omnizart encompasses modules that construct the life-cycle of deep learning-based AMT, and is designed for ease of use
We introduce the Expanded Groove MIDI dataset (E-GMD), an automatic drum transcription (ADT) dataset that contains 444 hours of audio from 43 drum kits, making it an order of magnitude larger than similar datasets, and the first with human-performed
We propose a unified model for three inter-related tasks: 1) to textit{separate} individual sound sources from a mixed music audio, 2) to textit{transcribe} each sound source to MIDI notes, and 3) totextit{ synthesize} new pieces based on the timbre
Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then conca
Automatic Music Transcription has seen significant progress in recent years by training custom deep neural networks on large datasets. However, these models have required extensive domain-specific design of network architectures, input/output represe