ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic Gyroscopes for Tests of Fundamental Physics

78   0   0.0 ( 0 )
 نشر من قبل Pavel Fadeev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for which precession dominates the FG dynamics. We note that evidence of gyroscopic behavior is present even at magnetic fields much larger than the threshold field below which precession dominates. We also model the dynamics of an FG levitated above a type-I superconductor via the Meissner effect, and find that for FGs with dimensions larger than about 100 nm the observed precession frequency is reduced compared to that of a freely floating FG. This is akin to negative feedback that arises from the distortion of the field from the FG by the superconductor. Finally we assess the sensitivity of an FG levitated above a type-I superconductor to exotic spin-dependent interactions under practical experimental conditions, demonstrating the potential of FGs for tests of fundamental physics.

قيم البحث

اقرأ أيضاً

346 - A.Yoshimi , M.Tanaka , 2021
We explore a possibility of measuring deviation from the exponential decay law in pure quantum systems. The power law behavior at late times of decay time profile is predicted in quantum mechanics, and has been experimentally attempted to detect, but with failures except a claim in an open system. It is found that electron tunneling from resonance state confined in man-made atoms, quantum dots, has a good chance of detecting the deviation and testing theoretical predictions. How initial unstable state is prepared influences greatly the time profile of decay law, and this can be used to set the onset time of the power law at earlier times. Comparison with similar process of nuclear alpha decay to discover the deviation is discussed, to explain why there exists a difficulty in this case.
The low-energy, long-lived isomer in $^{229}$Th, first studied in the 1970s as an exotic feature in nuclear physics, continues to inspire a multidisciplinary community of physicists. Using the nuclear resonance frequency, determined by the strong and electromagnetic interactions inside the nucleus, it is possible to build a highly precise nuclear clock that will be fundamentally different from all other atomic clocks based on resonant frequencies of the electron shell. The nuclear clock will open opportunities for highly sensitive tests of fundamental principles of physics, particularly in searches for violations of Einsteins equivalence principle and for new particles and interactions beyond the standard model. It has been proposed to use the nuclear clock to search for variations of the electromagnetic and strong coupling constants and for dark matter searches. The $^{229}$Th nuclear optical clock still represents a major challenge in view of the tremendous gap of nearly 17 orders of magnitude between the present uncertainty in the nuclear transition frequency and the natural linewidth. Significant experimental progress has been achieved in recent years, which will be briefly reviewed. Moreover, a research strategy will be outlined to consolidate our present knowledge about essential $^{229rm{m}}$Th properties, to determine the nuclear transition frequency with laser spectroscopic precision, realize different types of nuclear clocks and apply them in precision frequency comparisons with optical atomic clocks to test fundamental physics. Two avenues will be discussed: laser-cooled trapped $^{229}$Th ions that allow experiments with complete control on the nucleus-electron interaction and minimal systematic frequency shifts, and Th-doped solids enabling experiments at high particle number and in different electronic environments.
Very Long Baseline Atom Interferometry (VLBAI) corresponds to ground-based atomic matter-wave interferometry on large scales in space and time, letting the atomic wave functions interfere after free evolution times of several seconds or wave packet s eparation at the scale of meters. As inertial sensors, e.g., accelerometers, these devices take advantage of the quadratic scaling of the leading order phase shift with the free evolution time to enhance their sensitivity, giving rise to compelling experiments. With shot noise-limited instabilities better than $10^{-9}$ m/s$^2$ at 1 s at the horizon, VLBAI may compete with state-of-the-art superconducting gravimeters, while providing absolute instead of relative measurements. When operated with several atomic states, isotopes, or species simultaneously, tests of the universality of free fall at a level of parts in $10^{13}$ and beyond are in reach. Finally, the large spatial extent of the interferometer allows one to probe the limits of coherence at macroscopic scales as well as the interplay of quantum mechanics and gravity. We report on the status of the VLBAI facility, its key features, and future prospects in fundamental science.
This paper introduces new tests of fundamental physics by means of the analysis of disturbances on the GNSS signal propagation. We show how the GNSS signals are sensitive to a space variation of the fine structure constant $alpha$ in a generic framew ork of effective scalar field theories beyond the Standard Model. This effective variation may originate from the crossing of the RF signals with dark matter clumps and/or solitonic structures. At the macroscopic scale, the subsequent disturbances are equivalent to those which occur during the propagation in an inhomogeneous medium. We thus propose an interpretation of the measure of the vacuum permeability as a test of fundamental physics. We show the relevance of our approach by a first quantification of the expected signature in a simple model of a variation of $alpha$ according to a planar geometry. We use a test-bed model of domain walls for that purpose and focus on the measurable time delay in the GNSS signal carrier.
High-precision laser spectroscopy of atomic hydrogen has led to an impressive accuracy in tests of bound-state quantum electrodynamics (QED). At the current level of accuracy many systematics have to be studied very carefully and only independent mea surements provide the ultimate cross-check. This has been proven recently by measurements in muonic hydrogen, eventually leading to a significant shift of the CODATA recommended values of the proton charge radius and the Rydberg constant. We aim to contribute to tests of fundamental physics by measuring the 1S-2S transition in the He$^+$ ion for the first time. Combined with measurements in muonic helium ions this can probe the value of the Rydberg constant, test higher-order QED terms, or set benchmarks for ab initio nuclear polarizability calculations. We extend the Ramsey-comb spectroscopy method to the XUV using high-harmonic generation in order to excite a single, trapped He$^+$ ion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا