ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental physics tests using the propagation of GNSS signals

97   0   0.0 ( 0 )
 نشر من قبل Bruno Bertrand Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces new tests of fundamental physics by means of the analysis of disturbances on the GNSS signal propagation. We show how the GNSS signals are sensitive to a space variation of the fine structure constant $alpha$ in a generic framework of effective scalar field theories beyond the Standard Model. This effective variation may originate from the crossing of the RF signals with dark matter clumps and/or solitonic structures. At the macroscopic scale, the subsequent disturbances are equivalent to those which occur during the propagation in an inhomogeneous medium. We thus propose an interpretation of the measure of the vacuum permeability as a test of fundamental physics. We show the relevance of our approach by a first quantification of the expected signature in a simple model of a variation of $alpha$ according to a planar geometry. We use a test-bed model of domain walls for that purpose and focus on the measurable time delay in the GNSS signal carrier.



قيم البحث

اقرأ أيضاً

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamic s and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for which precession dominates the FG dynamics. We note that evidence of gyroscopic behavior is present even at magnetic fields much larger than the threshold field below which precession dominates. We also model the dynamics of an FG levitated above a type-I superconductor via the Meissner effect, and find that for FGs with dimensions larger than about 100 nm the observed precession frequency is reduced compared to that of a freely floating FG. This is akin to negative feedback that arises from the distortion of the field from the FG by the superconductor. Finally we assess the sensitivity of an FG levitated above a type-I superconductor to exotic spin-dependent interactions under practical experimental conditions, demonstrating the potential of FGs for tests of fundamental physics.
A central goal in experimental high energy physics is to detect new physics signals that are not explained by known physics. In this paper, we aim to search for new signals that appear as deviations from known Standard Model physics in high-dimension al particle physics data. To do this, we determine whether there is any statistically significant difference between the distribution of Standard Model background samples and the distribution of the experimental observations, which are a mixture of the background and a potential new signal. Traditionally, one also assumes access to a sample from a model for the hypothesized signal distribution. Here we instead investigate a model-independent method that does not make any assumptions about the signal and uses a semi-supervised classifier to detect the presence of the signal in the experimental data. We construct three test statistics using the classifier: an estimated likelihood ratio test (LRT) statistic, a test based on the area under the ROC curve (AUC), and a test based on the misclassification error (MCE). Additionally, we propose a method for estimating the signal strength parameter and explore active subspace methods to interpret the proposed semi-supervised classifier in order to understand the properties of the detected signal. We investigate the performance of the methods on a data set related to the search for the Higgs boson at the Large Hadron Collider at CERN. We demonstrate that the semi-supervised tests have power competitive with the classical supervised methods for a well-specified signal, but much higher power for an unexpected signal which might be entirely missed by the supervised tests.
Very Long Baseline Atom Interferometry (VLBAI) corresponds to ground-based atomic matter-wave interferometry on large scales in space and time, letting the atomic wave functions interfere after free evolution times of several seconds or wave packet s eparation at the scale of meters. As inertial sensors, e.g., accelerometers, these devices take advantage of the quadratic scaling of the leading order phase shift with the free evolution time to enhance their sensitivity, giving rise to compelling experiments. With shot noise-limited instabilities better than $10^{-9}$ m/s$^2$ at 1 s at the horizon, VLBAI may compete with state-of-the-art superconducting gravimeters, while providing absolute instead of relative measurements. When operated with several atomic states, isotopes, or species simultaneously, tests of the universality of free fall at a level of parts in $10^{13}$ and beyond are in reach. Finally, the large spatial extent of the interferometer allows one to probe the limits of coherence at macroscopic scales as well as the interplay of quantum mechanics and gravity. We report on the status of the VLBAI facility, its key features, and future prospects in fundamental science.
High-precision laser spectroscopy of atomic hydrogen has led to an impressive accuracy in tests of bound-state quantum electrodynamics (QED). At the current level of accuracy many systematics have to be studied very carefully and only independent mea surements provide the ultimate cross-check. This has been proven recently by measurements in muonic hydrogen, eventually leading to a significant shift of the CODATA recommended values of the proton charge radius and the Rydberg constant. We aim to contribute to tests of fundamental physics by measuring the 1S-2S transition in the He$^+$ ion for the first time. Combined with measurements in muonic helium ions this can probe the value of the Rydberg constant, test higher-order QED terms, or set benchmarks for ab initio nuclear polarizability calculations. We extend the Ramsey-comb spectroscopy method to the XUV using high-harmonic generation in order to excite a single, trapped He$^+$ ion.
138 - H. Fritzsch 2009
We discuss the fundamental constants of physics in the Standard Model and possible changes of these constants on the cosmological time scale. The Grand Unification of the strong, electromagnetic and weak interactions implies relations between the tim e variation of the finestructure constant and of the QCD scale. An experiment in quantum optics at the MPQ in Munich, which was designed to look for a time variation of the QCD scale, is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا