ترغب بنشر مسار تعليمي؟ اضغط هنا

An extremely metal-deficient globular cluster in the Andromeda Galaxy

76   0   0.0 ( 0 )
 نشر من قبل Soeren S. Larsen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. S. Larsen




اسأل ChatGPT حول البحث

Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, and measurements of their composition can therefore provide insight into the build-up of the chemical elements in galaxies in the early Universe. We report a massive GC in the Andromeda Galaxy (M31) that is extremely depleted in heavy elements. Its iron abundance is about 800 times lower than that of the Sun, and about three times lower than in the most iron-poor GCs previously known. It is also strongly depleted in magnesium. These measurements challenge the notion of a metallicity floor for GCs and theoretical expectations that massive GCs could not have formed at such low metallicities.



قيم البحث

اقرأ أيضاً

We have obtained optical spectroscopy of one of the most metal-poor dwarf star-forming galaxies (SFG) in the local Universe, J1234+3901, with the Large Binocular Telescope (LBT)/Multi-Object Dual Spectrograph (MODS). This blue compact dwarf (BCD) gal axy with a redshift z=0.133 was selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Its properties are extreme in many ways. Its oxygen abundance 12 + log O/H = 7.035+/-0.026 is among the lowest ever observed for a SFG. Its absolute magnitude Mg = -17.35 mag makes it the brightest galaxy among the known BCDs with 12 + log O/H < 7.3. With its low metallicity, low stellar mass M* = 10^7.13 Msun and very low mass-to-light ratio M*/Lg ~ 0.01 (in solar units), it deviates strongly from the mass-metallicity and luminosity-metallicity relations defined by the bulk of the SFGs in SDSS DR14. J1234+3901 has a very high specific star-formation rate sSFR ~ 100 Gyr^-1, indicating very active ongoing star-formation. Its spectrum shows a strong HeII 4686 emission line, with a flux ~ 2.4 per cent that of the Hbeta emission line. The most probable source of ionizing radiation for producing such a strong line is fast radiative shocks. J1234+3901 has a ratio O32 = [OIII]5007/[OII]3727 ~ 15, the highest among the lowest-metallicity SFGs, and is thus likely leaking Lyman continuum radiation. It is a good candidate for being a young dwarf galaxy, with a large fraction of its stars formed recently. As such, it is probably one of the best local counterparts of dwarf primeval galaxies responsible for the reionization of the early Universe.
79 - Yong Shi 2016
Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formatio n of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies, such as our Milky Way) remains unclear. Here, we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.
We present KPNO 4-m and LBT/MODS spectroscopic observations of an HII region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensiti ve [O III] 4363 Angstrom line and determine a direct oxygen abundance of 12 + log(O/H) = 7.17 +/- 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal alpha element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the delayed release hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509 +0.0184 -0.0123 which compares well with the WMAP + BBN prediction of 0.2483 +/- 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.
We present B and V time-series photometry of Andromeda XXV, the third galaxy in our program on the Andromedas satellites, that we have imaged with the Large Binocular Cameras of the Large Binocular Telescope. The field of Andromeda XXV is found to co ntain 63 variable stars, for which we present light curves and characteristics of the light variation (period, amplitudes, variability type, mean magnitudes, etc.). The sample includes 58 RR Lyrae variables (46 fundamental-mode $-$ RRab, and 12 first-overtone $-$RRc, pulsators), three anomalous Cepheids, one eclipsing binary system and one unclassified variable. The average period of the RRab stars ($langle Pab rangle$ = 0.60 $sigma=0.04$ days) and the period-amplitude diagram place Andromeda XXV in the class of the Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derive for the galaxy a distance modulus of (m-M)$_0$=$24.63pm0.17$ mag. The color-magnitude diagram reveals the presence in Andromeda XXV of a single, metal-poor ([Fe/H]=$-$1.8 dex) stellar population as old as $sim$ 10-12 Gyr traced by a conspicuous red giant branch and the large population of RR Lyrae stars. We discovered a spherically-shaped high density of stars near the galaxy center. This structure appears to be at a distance consistent with Andromeda XXV and we suggest it could either be a star cluster or the nucleus of Andromeda XXV. We provide a summary and compare number and characteristics of the pulsating stars in the M31 satellites analyzed so far for variability.
104 - T. X. Thuan 2016
We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely m etal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا