ترغب بنشر مسار تعليمي؟ اضغط هنا

J1234+3901: an extremely metal-deficient compact star-forming dwarf galaxy at redshift 0.133

393   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained optical spectroscopy of one of the most metal-poor dwarf star-forming galaxies (SFG) in the local Universe, J1234+3901, with the Large Binocular Telescope (LBT)/Multi-Object Dual Spectrograph (MODS). This blue compact dwarf (BCD) galaxy with a redshift z=0.133 was selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Its properties are extreme in many ways. Its oxygen abundance 12 + log O/H = 7.035+/-0.026 is among the lowest ever observed for a SFG. Its absolute magnitude Mg = -17.35 mag makes it the brightest galaxy among the known BCDs with 12 + log O/H < 7.3. With its low metallicity, low stellar mass M* = 10^7.13 Msun and very low mass-to-light ratio M*/Lg ~ 0.01 (in solar units), it deviates strongly from the mass-metallicity and luminosity-metallicity relations defined by the bulk of the SFGs in SDSS DR14. J1234+3901 has a very high specific star-formation rate sSFR ~ 100 Gyr^-1, indicating very active ongoing star-formation. Its spectrum shows a strong HeII 4686 emission line, with a flux ~ 2.4 per cent that of the Hbeta emission line. The most probable source of ionizing radiation for producing such a strong line is fast radiative shocks. J1234+3901 has a ratio O32 = [OIII]5007/[OII]3727 ~ 15, the highest among the lowest-metallicity SFGs, and is thus likely leaking Lyman continuum radiation. It is a good candidate for being a young dwarf galaxy, with a large fraction of its stars formed recently. As such, it is probably one of the best local counterparts of dwarf primeval galaxies responsible for the reionization of the early Universe.

قيم البحث

اقرأ أيضاً

104 - T. X. Thuan 2016
We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely m etal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.
75 - S. S. Larsen 2020
Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, and measurements of their composition can therefore provide insight into th e build-up of the chemical elements in galaxies in the early Universe. We report a massive GC in the Andromeda Galaxy (M31) that is extremely depleted in heavy elements. Its iron abundance is about 800 times lower than that of the Sun, and about three times lower than in the most iron-poor GCs previously known. It is also strongly depleted in magnesium. These measurements challenge the notion of a metallicity floor for GCs and theoretical expectations that massive GCs could not have formed at such low metallicities.
160 - Enci Wang , Xu Kong , Zhizheng Pan 2018
Previous findings show that the existence of dense cores or bulges is the prerequisite for quenching a galaxy, leading to a proposed two-step quenching scenario: compaction and quenching. In this scenario, galaxies first grow their cores to a stellar mass surface density threshold and subsequently quenching occurs, suggesting that galaxies evolve from extended star-forming galaxies (eSFGs), through compact star-forming galaxies (cSFGs), to quenched population. In this work, we aim at examining the possible evolutionary link between eSFGs and cSFGs by identifying the trends in star formation rate (SFR), gas-phase metallicity and HI content, since one would naturally expect that galaxies evolve along the track of cold gas consumption and metal enhancement. We select a volume-limited sample of 15,933 galaxies with stellar mass above $10^{9.5}M_{odot}$ and redshift of 0.02 < z < 0.05 from the NASA-Sloan-Atlas catalog within the ALFALFA footprint. The cSFGs on average exhibit similar or slightly higher SFRs of $sim$0.06 dex and significantly higher gas-phase metallicity (up to 0.2 dex at low mass) with respect to the eSFGs, while the cSFGs dominate the galaxy population of the most intense star formation activities. More importantly, overall the median HI content and gas depletion time of cSFGs are about half of eSFGs. Our result supports the compaction and quenching scenario that galaxies evolve and grow their cores along the track of cold gas consumption and metal enhancement. The environments of eSFGs and cSFGs are indistinguishable, suggesting that the compaction process is independent of any environmental effects at least for low-redshift universe.
We present KPNO 4-m and LBT/MODS spectroscopic observations of an HII region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensiti ve [O III] 4363 Angstrom line and determine a direct oxygen abundance of 12 + log(O/H) = 7.17 +/- 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal alpha element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the delayed release hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509 +0.0184 -0.0123 which compares well with the WMAP + BBN prediction of 0.2483 +/- 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.
Using the Large Binocular Telescope (LBT)/Multi-Object Dual Spectrograph (MODS), we have obtained optical spectroscopy of one of the most metal-poor dwarf star-forming galaxies (SFG) in the local Universe, J2229+2725. This galaxy with a redshift z=0. 0762 was selected from the Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS). Its properties derived from the LBT observations are most extreme among SFGs in several ways. Its oxygen abundance 12+logO/H=7.085+/-0.031 is among the lowest ever observed for a SFG. With its very low metallicity, an absolute magnitude Mg=-16.39 mag, a low stellar mass Mstar=9.1x10^6 Msun and a very low mass-to-light ratio Mstar/Lg~0.0166 (in solar units), J2229+2725 deviates strongly from the luminosity-metallicity relation defined by the bulk of the SFGs in the SDSS. J2229$+$2725 has a very high specific star-formation rate sSFR~75 Gyr^-1, indicating very active ongoing star formation. Three other features of J2229+2725 are most striking, being the most extreme among lowest-metallicity SFGs: 1) a ratio O32=I([OIII]5007)/I([OII]3727)~53, 2) an equivalent width of the Hbeta emission line EW(Hbeta) of 577A, and 3) an electron number density of ~1000 cm^-3. These properties imply that the starburst in J2229+2725 is very young. Using the extremely high O32 in J2229+2725, we have improved the strong-line calibration for the determination of oxygen abundances in the most metal-deficient galaxies, in the range 12 + logO/H<7.3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا