ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon monoxide in an extremely metal-poor galaxy

80   0   0.0 ( 0 )
 نشر من قبل Yong Shi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yong Shi




اسأل ChatGPT حول البحث

Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies, such as our Milky Way) remains unclear. Here, we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.

قيم البحث

اقرأ أيضاً

85 - Yong Shi 2015
Carbon monoxide (CO) is one of the primary coolants of gas and an easily accessible tracer of molecular gas in spiral galaxies but it is unclear if CO plays a similar role in metal poor dwarfs. We carried out a deep observation with IRAM 30 m to sear ch for CO emission by targeting the brightest far-IR peak in a nearby extremely metal poor galaxy, Sextans A, with 7% Solar metallicity. A weak CO J=1-0 emission is seen, which is already faint enough to place a strong constraint on the conversion factor (a_CO) from the CO luminosity to the molecular gas mass that is derived from the spatially resolved dust mass map. The a_CO is at least seven hundred times the Milky Way value. This indicates that CO emission is exceedingly weak in extremely metal poor galaxies, challenging its role as a coolant in these galaxies.
224 - F. Annibali 2018
We present chemical abundances and radial velocities of six HII regions in the extremely metal-poor star-forming dwarf galaxy DDO 68. They are derived from deep spectra in the wavelength range 3500 - 10,000 {AA}, acquired with the Multi Object Double Spectrograph (MODS) at the Large Binocular Telescope (LBT). In the three regions where the [O III]$lambda$4363 {AA} line was detected, we inferred the abundance of He, N, O, Ne, Ar, and S through the direct method. We also derived the oxygen abundances of all the six regions adopting indirect method calibrations. We confirm that DDO 68 is an extremely metal-poor galaxy, and a strong outlier in the luminosity - metallicity relation defined by star-forming galaxies. With the direct-method we find indeed an oxygen abundance of 12+log(O/H)=7.14$pm$0.07 in the northernmost region of the galaxy and, although with large uncertainties, an even lower 12+log(O/H)=6.96$pm$0.09 in the tail. This is, at face value, the most metal-poor direct abundance detection of any galaxy known. We derive a radial oxygen gradient of -0.06$pm$0.03 dex/kpc (or -0.30 dex $R_{25}^{-1}$) with the direct method, and a steeper gradient of -0.12$pm$0.03 dex/kpc (or -0.59 dex $R_{25}^{-1}$) from the indirect method. For the $alpha$-element to oxygen ratios we obtain values in agreement with those found in other metal-poor star-forming dwarfs. For nitrogen, instead, we infer much higher values, leading to log(N/O)$sim-1.4$, at variance with the suggested existence of a tight plateau at $-1.6$ in extremely metal poor dwarfs. The derived helium mass fraction ranges from Y=0.240$pm$0.005 to Y=0.25$pm$0.02, compatible with standard big bang nucleosynthesis. Finally, we measured HII region radial velocities in the range 479$-$522 km/s from the tail to the head of the comet, consistent with the rotation derived in the HI.
119 - Yong Shi 2014
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge n below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon Monoxide (CO) emission is unreliable as tracers of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low-spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially-resolved infrared observations of two galaxies with oxygen abundances below 10 per cent solar, and show that stars form very inefficiently in seven star-forming clumps of these galaxies. The star formation efficiencies are more than ten times lower than found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.
75 - S. S. Larsen 2020
Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, and measurements of their composition can therefore provide insight into th e build-up of the chemical elements in galaxies in the early Universe. We report a massive GC in the Andromeda Galaxy (M31) that is extremely depleted in heavy elements. Its iron abundance is about 800 times lower than that of the Sun, and about three times lower than in the most iron-poor GCs previously known. It is also strongly depleted in magnesium. These measurements challenge the notion of a metallicity floor for GCs and theoretical expectations that massive GCs could not have formed at such low metallicities.
The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan cement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] lesssim -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا