ﻻ يوجد ملخص باللغة العربية
A class of Fe--Mn--Si-based alloys exhibit a reversible martensitic transformation between the $gamma$ phase with a face-centered cubic~($fcc$) and an $epsilon$ phase with a hexagonal close-packed ($hcp$) structure. During the deformation-induced $gamma$--$epsilon$ transformation, we identified a new phase that is different from the $epsilon$ phase. In this phase, the electron diffraction spots are located at the 1/3 positions corresponding to the ${$0002$}$ plane of the $epsilon$ ($hcp$) phase with 2H structure, which suggests long-period stacking order (LPSO). To understand the stacking pattern and explore the possible existence of an LPSO phase as an intermediate between the $gamma$ and $epsilon$ phases, we examined the phase stability of various structural polytypes of iron using first-principles calculations with a spin-polarized form of the generalized gradient approximation in density functional theory. We found that an antiferromagnetic ordered 6H$_2$ structure is the most stable among the candidate LPSO structures and is energetically close to the $epsilon$ phase, suggesting that the observed LPSO-like phase adopts the 6H$_2$ structure. Furthermore, we determined that the phase stability can be attributed to the valleys depth in the density of states~close to the Fermi level.
Using classical molecular dynamics simulations, we study austenite to ferrite phase transformation in iron, focusing on the role of interface morphology. We compare two different morphologies; a textit{flat} interface in which the two phases are join
We propose a mathematical description of crystal structure: underlying translational periodicity together with the distinct atomic positions up to the symmetry operations in the unit cell. It is consistent with the international table of crystallogra
It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensit
Contrary to previous studies that identified the ground state crystal structure of the entire R_3Co series (R is a rare earth) as orthorhombic Pnma, we show that Y_3Co undergoes a structural phase transition at T_t=160K. Single crystal neutron diffra
A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sig