ﻻ يوجد ملخص باللغة العربية
Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID and imbalanced (statistical heterogeneity) training data of FL is distributed in the federated network, which will increase the divergences between the local models and global model, further degrading performance. In this paper, we propose a novel clustered federated learning (CFL) framework FedGroup, in which we 1) group the training of clients based on the similarities between the clients optimization directions for high training performance; 2) construct a new data-driven distance measure to improve the efficiency of the client clustering procedure. 3) implement a newcomer device cold start mechanism based on the auxiliary global model for framework scalability and practicality. FedGroup can achieve improvements by dividing joint optimization into groups of sub-optimization and can be combined with FL optimizer FedProx. The convergence and complexity are analyzed to demonstrate the efficiency of our proposed framework. We also evaluate FedGroup and FedGrouProx (combined with FedProx) on several open datasets and made comparisons with related CFL frameworks. The results show that FedGroup can significantly improve absolute test accuracy by +14.1% on FEMNIST compared to FedAvg. +3.4% on Sentiment140 compared to FedProx, +6.9% on MNIST compared to FeSEM.
Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID, imbalanced (statistical h
Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. Th
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten
Federated learning is a novel framework that enables resource-constrained edge devices to jointly learn a model, which solves the problem of data protection and data islands. However, standard federated learning is vulnerable to Byzantine attacks, wh
Federated learning (FL) offers a solution to train a global machine learning model while still maintaining data privacy, without needing access to data stored locally at the clients. However, FL suffers performance degradation when client data distri