ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the Onset of Complex Organic Molecule Formation in Interstellar Ices

206   0   0.0 ( 0 )
 نشر من قبل Laurie Chu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isolated dense molecular cores are investigated to study the onset of complex organic molecule formation in interstellar ice. Sampling three cores with ongoing formation of low-mass stars (B59, B335, and L483) and one starless core (L694-2) we sample lines of sight to nine background stars and five young stellar objects (YSOs; A_K ~0.5 - 4.7). Spectra of these stars from 2-5 $mu$m with NASAs Infrared Telescope Facility (IRTF) simultaneously display signatures from the cores of H$_2$O (3.0 $mu$m), CH$_3$OH (C-H stretching mode, 3.53 $mu$m) and CO (4.67 $mu$m) ices. The CO ice is traced by nine stars in which five show a long wavelength wing due to a mixture of CO with polar ice (CO$_r$), presumably CH$_3$OH. Two of these sight lines also show independent detections of CH$_3$OH. For these we find the ratio of the CH$_3$OH:CO$_r$ is 0.55$pm$0.06 and 0.73$pm$0.07 from L483 and L694-2, respectively. The detections of both CO and CH$_3$OH for the first time through lines of sight toward background stars observationally constrains the conversion of CO into CH$_3$OH ice. Along the lines of sight most of the CO exists in the gas phase and $leq$15% of the CO is frozen out. However, CH$_3$OH ice is abundant with respect to CO (~50%) and exists mainly as a CH$_3$OH-rich CO ice layer. Only a small fraction of the lines of sight contains CH$_3$OH ice, presumably that with the highest density. The high conversion of CO to CH$_3$OH can explain the abundances of CH$_3$OH ice found in later stage Class 1 low mass YSO envelopes (CH$_3$OH:CO$_r$ ~ 0.5-0.6). For high mass YSOs and one Class 0 YSO this ratio varies significantly implying local variations can affect the ice formation. The large CH$_3$OH ice abundance indicates that the formation of complex organic molecules is likely during the pre-stellar phase in cold environments without higher energy particle interactions (e.g. cosmic rays).

قيم البحث

اقرأ أيضاً

Synthetic observations are playing an increasingly important role across astrophysics, both for interpreting real observations and also for making meaningful predictions from models. In this review, we provide an overview of methods and tools used fo r generating, manipulating and analysing synthetic observations and their application to problems involving star formation and the interstellar medium. We also discuss some possible directions for future research using synthetic observations.
465 - H. Qi , S. Picaud , M. Devel 2018
Using atomistic simulations, we characterize the adsorption process of organic molecules on carbon nanoparticles, both of which have been reported to be abundant in the interstellar medium (ISM). It is found that the aromatic organics are adsorbed mo re readily than the aliphatic ones. This selectivity would favor the formation of polycyclic aromatic hydrocarbons (PAHs) or fullerene-like structures in the ISM due to structural similarity. It is also observed in our simulations that the molecules form a monolayer over the nanoparticle surface before stacking up in aggregates. This suggests a possible layer-by-layer formation process of onion-like nanostructures in the ISM. These findings reveal the possible role of carbon nanoparticles as selective catalysts that could provide reaction substrates for the formation of interstellar PAHs, high-fullerenes and soots from gas-phase molecules.
During the formation of stars, the accretion of the surrounding material toward the central object is thought to undergo strong luminosity outbursts, followed by long periods of relative quiescence, even at the early stages of star formation when the protostar is still embedded in a large envelope. We investigated the gas phase formation and the recondensation of the complex organic molecules (COMs) di-methyl ether and methyl formate, induced by sudden ice evaporation processes occurring during luminosity outbursts of different amplitudes in protostellar envelopes. For this purpose, we updated a gas phase chemical network forming complex organic molecules in which ammonia plays a key role. The model calculations presented here demonstrate that ion-molecule reactions alone could account for the observed presence of di-methyl ether and methyl formate in a large fraction of protostellar cores, without recourse to grain-surface chemistry, although they depend on uncertain ice abundances and gas phase reaction branching ratios. In spite of the short outburst timescales of about one hundred years, abundance ratios of the considered species with respect to methanol higher than 10 % are predicted during outbursts due to their low binding energies relative to water and methanol that delay their recondensation during the cooling. Although the current luminosity of most embedded protostars would be too low to produce these complex species in hot core regions that can be observable with current sub-millimetric interferometers, previous luminosity outburst events would induce a formation of COMs in extended regions of protostellar envelopes with sizes increasing by up to one order of magnitude.
Quantifying the composition of the material in protoplanetary disks is paramount to determining the potential for exoplanetary systems to produce and support habitable environments. A key complex organic molecule (COM) to detect is methanol (CH3OH). CH3OH primarily forms at low temperatures via the hydrogenation of CO ice on the surface of icy dust grains and is a necessary basis for the formation of more complex species like amino acids and proteins. We report the detection of CH3OH in a disk around a young, luminous A-type star HD100546. This disk is warm and therefore does not host a significant CO ice reservoir. We argue that the CH3OH cannot form in situ, and hence, this disk has likely inherited COMs rich ice from an earlier cold dark cloud phase. This is strong evidence that at least some of the organic material survives the disk formation process and can then be incorporated into forming planets, moons and comets. Therefore, crucial pre-biotic chemical evolution already takes place in dark star-forming clouds.
Theories of a pre-RNA world suggest that glycolonitrile (HOCH$_2$CN) is a key species in the process of ribonucleotide assembly, which is considered as a molecular precursor of nucleic acids. In this Letter, we report the first detection of this pre- biotic molecule in the interstellar medium (ISM) by using ALMA data obtained at frequencies between 86.5$,$GHz and 266.5$,$GHz toward the Solar-type protostar IRAS16293-2422 B. A total of 15 unblended transitions of HOCH$_2$CN were identified. Our analysis indicates the presence of a cold (T$rm _{ex}$=24$pm$8$,$K) and a warm (T$rm _{ex}$=158$pm$38$,$K) component meaning that this molecule is present in both the inner hot corino and the outer cold envelope of IRAS16293 B. The relative abundance with respect to H$_2$ is (6.5$pm$0.6)$times$10$^{-11}$ and $geq$(6$pm$2)$times$10$^{-10}$ for the warm and cold components respectively. Our chemical modelling seems to underproduce the observed abundance for both the warm and cold component under various values of the cosmic-ray ionisation rate ($zeta$). Key gas phase routes for the formation of this molecule might be missing in our chemical network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا