ﻻ يوجد ملخص باللغة العربية
Using atomistic simulations, we characterize the adsorption process of organic molecules on carbon nanoparticles, both of which have been reported to be abundant in the interstellar medium (ISM). It is found that the aromatic organics are adsorbed more readily than the aliphatic ones. This selectivity would favor the formation of polycyclic aromatic hydrocarbons (PAHs) or fullerene-like structures in the ISM due to structural similarity. It is also observed in our simulations that the molecules form a monolayer over the nanoparticle surface before stacking up in aggregates. This suggests a possible layer-by-layer formation process of onion-like nanostructures in the ISM. These findings reveal the possible role of carbon nanoparticles as selective catalysts that could provide reaction substrates for the formation of interstellar PAHs, high-fullerenes and soots from gas-phase molecules.
Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smalles
Isolated dense molecular cores are investigated to study the onset of complex organic molecule formation in interstellar ice. Sampling three cores with ongoing formation of low-mass stars (B59, B335, and L483) and one starless core (L694-2) we sample
During the formation of stars, the accretion of the surrounding material toward the central object is thought to undergo strong luminosity outbursts, followed by long periods of relative quiescence, even at the early stages of star formation when the
We study whether polycyclic aromatic hydrocarbons (PAHs) can be a weighty source of small hydrocarbons in photo-dissociation regions (PDRs). We modeled the evolution of 20 specific PAH molecules in terms of dehydrogenation and destruction of the carb
The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate