ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic observations of star formation and the interstellar medium

182   0   0.0 ( 0 )
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthetic observations are playing an increasingly important role across astrophysics, both for interpreting real observations and also for making meaningful predictions from models. In this review, we provide an overview of methods and tools used for generating, manipulating and analysing synthetic observations and their application to problems involving star formation and the interstellar medium. We also discuss some possible directions for future research using synthetic observations.

قيم البحث

اقرأ أيضاً

139 - Clare L. Dobbs 2014
By resimulating a region of a global disc simulation at higher resolution, we resolve and study the properties of molecular clouds with a range of masses from a few 100s M$_{odot}$ to $10^6$ M$_{odot}$. The purpose of our paper is twofold, i) to comp are the ISM and GMCs at much higher resolution compared to previous global simulations, and ii) to investigate smaller clouds and characteristics such as the internal properties of GMCs which cannot be resolved in galactic simulations. We confirm the robustness of cloud properties seen in previous galactic simulations, and that these properties extend to lower mass clouds, though we caution that velocity dispersions may not be measured correctly in poorly resolved clouds. We find that the properties of the clouds and ISM are only weakly dependent on the details of local stellar feedback, although stellar feedback is important to produce realistic star formation rates and agreement with the Schmidt-Kennicutt relation. We study internal properties of GMCs resolved by $10^4-10^5$ particles. The clouds are highly structured, but we find clouds have a velocity dispersion radius relationship which overall agrees with the Larson relation. The GMCs show evidence of multiple episodes of star formation, with holes corresponding to previous feedback events and dense regions likely to imminently form stars. Our simulations show clearly long filaments, which are seen predominantly in the inter-arm regions, and shells.
Cyanogen (NCCN) is the simplest member of the dicyanopolyynes group, and has been proposed as a major source of the CN radical observed in cometary atmospheres. Although not detected through its rotational spectrum in the cold interstellar medium, th is very stable species is supposed to be very abundant. The chemistry of cyanogen in the cold interstellar medium can be investigated through its metastable isomer, CNCN (isocyanogen). Its formation may provide a clue on the widely abundant CN radical observed in cometary atmospheres. We performed an unbiased spectral survey of the L1544 proto-typical prestellar core, using the IRAM-30m and have analysed, for this paper, the nitrogen chemistry that leads to the formation of isocyanogen. We report on the first detection of CNCN, NCCNH+, C3N, CH3CN, C2H3CN, and H2CN in L1544. We built a detailed chemical network for NCCN/CNCN/HC2N2+ involving all the nitrogen bearing species detected (CN, HCN, HNC, C3N, CNCN, CH3CN, CH2CN, HCCNC, HC3N, HNC3, H2CN, C2H3CN, HCNH+, HC3NH+) and the upper limits on C4N, C2N. The main cyanogen production pathways considered in the network are the CN + HNC and N + C3N reactions. The comparison between the observations of the nitrogen bearing species and the predictions from the chemical modelling shows a very good agreement, taking into account the new chemical network. The expected cyanogen abundance is greater than the isocyanogen abundance by a factor of 100. Although cyanogen cannot be detected through its rotational spectrum, the chemical modelling predicts that it should be abundant in the gas phase and hence might be traced through the detection of isocyanogen. It is however expected to have a very low abundance on the grain surfaces compared to HCN.
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that c ontrol its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.
120 - Gerhard Hensler 2010
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple xity of investigations aiming at understanding the interchange between supernovae and their released hot gas with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and apply multiple recipes of these parameters, only a representative selection of studies can be discussed here.
301 - S Paron 2018
The interstellar medium (ISM) is a very complex medium which contains the matter needed to form stars and planets. The ISM is in permanent interaction with radiation, turbulence, magnetic and gravitational fields, and accelerated particles. Everythin g that happens in this medium has consequences on the dynamics and evolution of the Galaxy, resulting the link that relates the stellar scale with the galactic one. Thus, the study of the ISM is crucial to advance in the knowledge of stellar and galactic astrophysics. In this article I present a summary of what we know about the physics and chemistry of this medium, giving an special emphasis on star formation, and how the processes related to the stars birth and evolution interrelate with the environment that surrounds them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا