ﻻ يوجد ملخص باللغة العربية
We consider regression problems with binary weights. Such optimization problems are ubiquitous in quantized learning models and digital communication systems. A natural approach is to optimize the corresponding Lagrangian using variants of the gradient ascent-descent method. Such maximin techniques are still poorly understood even in the concave-convex case. The non-convex binary constraints may lead to spurious local minima. Interestingly, we prove that this approach is optimal in linear regression with low noise conditions as well as robust regression with a small number of outliers. Practically, the method also performs well in regression with cross entropy loss, as well as non-convex multi-layer neural networks. Taken together our approach highlights the potential of saddle-point optimization for learning constrained models.
There is an increasing realization that algorithmic inductive biases are central in preventing overfitting; empirically, we often see a benign overfitting phenomenon in overparameterized settings for natural learning algorithms, such as stochastic gr
Bilevel optimization has been widely applied in many important machine learning applications such as hyperparameter optimization and meta-learning. Recently, several momentum-based algorithms have been proposed to solve bilevel optimization problems
Optimization in machine learning, both theoretical and applied, is presently dominated by first-order gradient methods such as stochastic gradient descent. Second-order optimization methods, that involve second derivatives and/or second order statist
First-order methods such as stochastic gradient descent (SGD) are currently the standard algorithm for training deep neural networks. Second-order methods, despite their better convergence rate, are rarely used in practice due to the prohibitive comp
Variance reduction techniques like SVRG provide simple and fast algorithms for optimizing a convex finite-sum objective. For nonconvex objectives, these techniques can also find a first-order stationary point (with small gradient). However, in noncon