ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization

142   0   0.0 ( 0 )
 نشر من قبل Xiang Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Variance reduction techniques like SVRG provide simple and fast algorithms for optimizing a convex finite-sum objective. For nonconvex objectives, these techniques can also find a first-order stationary point (with small gradient). However, in nonconvex optimization it is often crucial to find a second-order stationary point (with small gradient and almost PSD hessian). In this paper, we show that Stabilized SVRG (a simple variant of SVRG) can find an $epsilon$-second-order stationary point using only $widetilde{O}(n^{2/3}/epsilon^2+n/epsilon^{1.5})$ stochastic gradients. To our best knowledge, this is the first second-order guarantee for a simple variant of SVRG. The running time almost matches the known guarantees for finding $epsilon$-first-order stationary points.



قيم البحث

اقرأ أيضاً

Variance reduction (VR) methods for finite-sum minimization typically require the knowledge of problem-dependent constants that are often unknown and difficult to estimate. To address this, we use ideas from adaptive gradient methods to propose AdaSV RG, which is a fully adaptive variant of SVRG, a common VR method. AdaSVRG uses AdaGrad in the inner loop of SVRG, making it robust to the choice of step-size, and allowing it to adaptively determine the length of each inner-loop. When minimizing a sum of $n$ smooth convex functions, we prove that AdaSVRG requires $O(n + 1/epsilon)$ gradient evaluations to achieve an $epsilon$-suboptimality, matching the typical rate, but without needing to know problem-dependent constants. However, VR methods including AdaSVRG are slower than SGD when used with over-parameterized models capable of interpolating the training data. Hence, we also propose a hybrid algorithm that can adaptively switch from AdaGrad to AdaSVRG, achieving the best of both stochastic gradient and VR methods, but without needing to tune their step-sizes. Via experiments on synthetic and standard real-world datasets, we validate the robustness and effectiveness of AdaSVRG, demonstrating its superior performance over other tune-free VR methods.
As application demands for zeroth-order (gradient-free) optimization accelerate, the need for variance reduced and faster converging approaches is also intensifying. This paper addresses these challenges by presenting: a) a comprehensive theoretical analysis of variance reduced zeroth-order (ZO) optimization, b) a novel variance reduced ZO algorithm, called ZO-SVRG, and c) an experimental evaluation of our approach in the context of two compelling applications, black-box chemical material classification and generation of adversarial examples from black-box deep neural network models. Our theoretical analysis uncovers an essential difficulty in the analysis of ZO-SVRG: the unbiased assumption on gradient estimates no longer holds. We prove that compared to its first-order counterpart, ZO-SVRG with a two-point random gradient estimator could suffer an additional error of order $O(1/b)$, where $b$ is the mini-batch size. To mitigate this error, we propose two accelerate
The variance reduction class of algorithms including the representative ones, SVRG and SARAH, have well documented merits for empirical risk minimization problems. However, they require grid search to tune parameters (step size and the number of iter ations per inner loop) for optimal performance. This work introduces `almost tune-free SVRG and SARAH schemes equipped with i) Barzilai-Borwein (BB) step sizes; ii) averaging; and, iii) the inner loop length adjusted to the BB step sizes. In particular, SVRG, SARAH, and their BB variants are first reexamined through an `estimate sequence lens to enable new averaging methods that tighten their convergence rates theoretically, and improve their performance empirically when the step size or the inner loop length is chosen large. Then a simple yet effective means to adjust the number of iterations per inner loop is developed to enhance the merits of the proposed averaging schemes and BB step sizes. Numerical tests corroborate the proposed methods.
We study constrained nonconvex optimization problems in machine learning, signal processing, and stochastic control. It is well-known that these problems can be rewritten to a minimax problem in a Lagrangian form. However, due to the lack of convexit y, their landscape is not well understood and how to find the stable equilibria of the Lagrangian function is still unknown. To bridge the gap, we study the landscape of the Lagrangian function. Further, we define a special class of Lagrangian functions. They enjoy two properties: 1.Equilibria are either stable or unstable (Formal definition in Section 2); 2.Stable equilibria correspond to the global optima of the original problem. We show that a generalized eigenvalue (GEV) problem, including canonical correlation analysis and other problems, belongs to the class. Specifically, we characterize its stable and unstable equilibria by leveraging an invariant group and symmetric property (more details in Section 3). Motivated by these neat geometric structures, we propose a simple, efficient, and stochastic primal-dual algorithm solving the online GEV problem. Theoretically, we provide sufficient conditions, based on which we establish an asymptotic convergence rate and obtain the first sample complexity result for the online GEV problem by diffusion approximations, which are widely used in applied probability and stochastic control. Numerical results are provided to support our theory.
Momentum Stochastic Gradient Descent (MSGD) algorithm has been widely applied to many nonconvex optimization problems in machine learning, e.g., training deep neural networks, variational Bayesian inference, and etc. Despite its empirical success, th ere is still a lack of theoretical understanding of convergence properties of MSGD. To fill this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion approximations for nonconvex optimization problems with strict saddle points and isolated local optima. Our study shows that the momentum helps escape from saddle points, but hurts the convergence within the neighborhood of optima (if without the step size annealing or momentum annealing). Our theoretical discovery partially corroborates the empirical success of MSGD in training deep neural networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا