ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological electronic structure in the antiferromagnet HoSbTe

81   0   0.0 ( 0 )
 نشر من قبل Baojie Feng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic topological materials, in which the time-reversal symmetry is broken, host various exotic quantum phenomena, including the quantum anomalous Hall effect, axion insulator states, and Majorana fermions. The study of magnetic topological materials is at the forefront of condensed matter physics. Recently, a variety of magnetic topological materials have been reported, such as Mn$_3$Sn, Co$_3$Sn$_2$S$_2$, Fe$_3$Sn$_2$, and MnBi$_2$Te$_4$. Here, we report the observation of a topological electronic structure in an antiferromagnet, HoSbTe, a member of the ZrSiS family of materials, by angle-resolved photoemission spectroscopy measurements and first-principles calculations. We demonstrate that HoSbTe is a Dirac nodal line semimetal when spin-orbit coupling (SOC) is neglected. However, our theoretical calculations show that the strong SOC in HoSbTe fully gaps out the nodal lines and drives the system to a weak topological insulator state, with each layer being a two-dimensional topological insulator. Because of the strong SOC in HoSbTe, the gap is as large as hundreds of meV along specific directions, which is directly observed by our ARPES measurements. The existence of magnetic order and topological properties in HoSbTe makes it a promising material for realization of exotic quantum devices.

قيم البحث

اقرأ أيضاً

We report the experimental and theoretical studies of a magnetic topological nodal line semimetal candidate HoSbTe. Single crystals of HoSbTe are grown from Sb flux, crystallizing in a tetragonal layered structure (space group: P4/nmm, no.129), in wh ich the Ho-Te bilayer is separated by the square-net Sb layer. The magnetization and specific heat present distinct anomalies at 4 K related to an antiferromagnetic (AFM) phase transition. Meanwhile, with applying magnetic field perpendicular and parallel to the crystallographic c axis, an obvious magnetic anisotropy is observed. Electrical resistivity undergoes a bad-metal-like state below 200 K and reveals a plateau at about 8 K followed by a drop due to the AFM transition. In addition, with the first-principle calculations of band structure, we find that HoSbTe is a topological nodal line semimetal or a weak topological insulator with or without taking the spin-orbit coupling into account, providing a platform to investigate the interplay between magnetic and topological fermionic properties.
In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory (KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256 cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts of the procedure in RESCU, we delay the $O(N^3)$ scaling to large $N$, and our tests show that RESCU scales consistently as $O(N^{2.3})$ from a few hundred atoms to more than 5,000 atoms when using a real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000 atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000 electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples running on 16, 64 and/or 256 cores: a 5,832 Si atoms supercell; a 8,788 Al atoms supercell; a 5,324 Cu atoms supercell and a small DNA molecule submerged in 1,713 water molecules for a total 5,399 atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest computer cluster.
First-principles electronic structure calculations are very widely used thanks to the many successful software packages available. Their traditional coding paradigm is monolithic, i.e., regardless of how modular its internal structure may be, the cod e is built independently from others, from the compiler up, with the exception of linear-algebra and message-passing libraries. This model has been quite successful for decades. The rapid progress in methodology, however, has resulted in an ever increasing complexity of those programs, which implies a growing amount of replication in coding and in the recurrent re-engineering needed to adapt to evolving hardware architecture. The Electronic Structure Library (esl) was initiated by CECAM (European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure programs and redesign them as free, open-source libraries. They include heavy-duty ones with a high degree of parallelisation, and potential for adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by scientists when implementing new ideas. It is a community effort, undertaken by developers of various successful codes, now facing the challenges arising in the new model. This modular paradigm will improve overall coding efficiency and enable specialists (computer scientists or computational scientists) to use their skills more effectively. It will lead to a more sustainable and dynamic evolution of software as well as lower barriers to entry for new developers.
Recently, the EuS/InAs interface has attracted attention for the possibility of inducing magnetic exchange correlations in a strong spin-orbit semiconductor, which could be useful for topological quantum devices. We use density functional theory (DFT ) with a machine-learned Hubbard $U$ correction [npj Comput. Mater. 6, 180 (2020)] to elucidate the effect of the bonding configuration at the interface on the electronic structure. For all interface configurations considered here, we find that the EuS valence band maximum (VBM) lies below the InAs VBM. In addition, dispersed states emerge at the top of the InAs VBM at the interface, which do not exist in either material separately. These states are contributed mainly by the InAs layer adjacent to the interface. They are localized at the interface and may be attributed to charge transfer from the EuS to the InAs. The interface configuration affects the position of the EuS VBM with respect to the InAs VBM, as well as the dispersion of the interface state. For all interface configurations studied here, the induced magnetic moment in the InAs is small. This suggests that this interface, in its coherent form studied here, is not promising for inducing equilibrium magnetic properties in InAs.
130 - Y. J. Chen , L. X. Xu , J. H. Li 2019
Topological quantum materials coupled with magnetism can provide a platform for realizing rich exotic physical phenomena, including quantum anomalous Hall effect, axion electrodynamics and Majorana fermions. However, these unusual effects typically r equire extreme experimental conditions such as ultralow temperature or sophisticate material growth and fabrication. Recently, new intrinsic magnetic topological insulators were proposed in MnBi2Te4-family compounds - on which rich topological effects could be realized under much relaxed experimental conditions. However, despite the exciting progresses, the detailed electronic structures observed in this family of compounds remain controversial up to date. Here, combining the use of synchrotron and laser light sources, we carried out comprehensive and high resolution angle-resolved photoemission spectroscopy studies on MnBi2Te4, and clearly identified its topological electronic structures including the characteristic gapless topological surface states. In addition, the temperature evolution of the energy bands clearly reveals their interplay with the magnetic phase transition by showing interesting differences for the bulk and surface states, respectively. The identification of the detailed electronic structures of MnBi2Te4 will not only help understand its exotic properties, but also pave the way for the design and realization of novel phenomena and applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا