ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and electronic properties of a topological nodal line semimetal candidate: HoSbTe

98   0   0.0 ( 0 )
 نشر من قبل Meng Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the experimental and theoretical studies of a magnetic topological nodal line semimetal candidate HoSbTe. Single crystals of HoSbTe are grown from Sb flux, crystallizing in a tetragonal layered structure (space group: P4/nmm, no.129), in which the Ho-Te bilayer is separated by the square-net Sb layer. The magnetization and specific heat present distinct anomalies at 4 K related to an antiferromagnetic (AFM) phase transition. Meanwhile, with applying magnetic field perpendicular and parallel to the crystallographic c axis, an obvious magnetic anisotropy is observed. Electrical resistivity undergoes a bad-metal-like state below 200 K and reveals a plateau at about 8 K followed by a drop due to the AFM transition. In addition, with the first-principle calculations of band structure, we find that HoSbTe is a topological nodal line semimetal or a weak topological insulator with or without taking the spin-orbit coupling into account, providing a platform to investigate the interplay between magnetic and topological fermionic properties.

قيم البحث

اقرأ أيضاً

We investigate systematically the bulk and surface electronic structure of the candidate nodal-line semimetal CaAgAs by angle resolved photoemission spectroscopy and density functional calculations. We observed a metallic, linear, non-$k_z$-dispersiv e surface band that coincides with the high-binding-energy part of the theoretical topological surface state, proving the topological nontriviality of the system. An overall downshift of the experimental Fermi level points to a rigid-band-like $p$-doping of the samples, due possibly to Ag vacancies in the as-grown crystals.
ZrSiS-type materials represent a large material family with unusual coexistence of topological nonsymmorphic Dirac fermions and nodal-line fermions. As a special group of ZrSiS-family, LnSbTe (Ln = Lanthanide rare earth) compounds provide a unique op portunity to explore new quantum phases due to the intrinsic magnetism induced by Ln. Here we report the single crystal growth and characterization of NdSbTe, a previously unexplored LnSbTe compound. NdSbTe has an antiferromagnetic ground state with field-driven metamagnetic transitions similar to other known LnSbTe, but exhibits distinct enhanced electronic correlations characterized by large a Sommerfeld coefficient of 115 mJ/mol $K^2$, which is the highest among the known LnSbTe compounds. Furthermore, our transport studies have revealed the coupling with magnetism and signatures of Kondo localization. All these findings establish NdSbTe as a new platform for observing novel phenomena arising from the interplay between magnetism, topology, and electron correlations.
Topological nodal-line semimetals support protected band crossings which form nodal lines or nodal loops between the valence and conduction bands and exhibit novel transport phenomena. Here we address the topological state of the nodal-line semimetal candidate material, CaCdSn, and report magnetotransport properties of its single crystals grown by the self-flux method. Our first-principles calculations show that the electronic structure of CaCdSn harbors a single nodal loop around the $Gamma$ point in the absence of spin-orbit coupling (SOC) effects. The nodal crossings in CaCdSn are found to lie above the Fermi level and yield a Fermi surface that consists of both electron and hole pockets. CaCdSn exhibits high mobility ($mu approx 3.44times 10^4$ cm$^2$V$^{-1}$s$^{-1}$) and displays a field-induced metal-semiconductor like crossover with a plateau in resistivity at low temperature. We observe an extremely large and quasilinear non-saturating transverse as well as longitudinal magnetoresistance (MR) at low temperatures ($approx 7.44times 10^3 %$ and $approx 1.71times 10^3%$, respectively, at 4K). We also briefly discuss possible reasons behind such a large quasilinear magnetoresistance and its connection with the nontrivial band structure of CaCdSn.
Magnetic topological materials, in which the time-reversal symmetry is broken, host various exotic quantum phenomena, including the quantum anomalous Hall effect, axion insulator states, and Majorana fermions. The study of magnetic topological materi als is at the forefront of condensed matter physics. Recently, a variety of magnetic topological materials have been reported, such as Mn$_3$Sn, Co$_3$Sn$_2$S$_2$, Fe$_3$Sn$_2$, and MnBi$_2$Te$_4$. Here, we report the observation of a topological electronic structure in an antiferromagnet, HoSbTe, a member of the ZrSiS family of materials, by angle-resolved photoemission spectroscopy measurements and first-principles calculations. We demonstrate that HoSbTe is a Dirac nodal line semimetal when spin-orbit coupling (SOC) is neglected. However, our theoretical calculations show that the strong SOC in HoSbTe fully gaps out the nodal lines and drives the system to a weak topological insulator state, with each layer being a two-dimensional topological insulator. Because of the strong SOC in HoSbTe, the gap is as large as hundreds of meV along specific directions, which is directly observed by our ARPES measurements. The existence of magnetic order and topological properties in HoSbTe makes it a promising material for realization of exotic quantum devices.
We report the magnetization, electrical resistivity, specific heat measurements and band structure calculations of layered superconductor SnTaS$_2$. The experiments are performed on single crystals grown by chemical vapor transport method. The resist ivity and magnetic susceptibility indicate that SnTaS$_2$ is a type-II superconductor with transition temperature $T_c = 3$ K. The upper critical field ($H_{c2}$) shows large anisotropy for magnetic field parallel to $ab$ plane ($H//ab$) and $c$ axis ($H//c$), and the temperature dependence of $H_{c2}$ for $H//ab$ shows obvious unconventional upward feature at low temperature. Band structure of SnTaS$_2$ shows several band crossings near the Fermi level, which form three nodal lines in the k$_z$ = 0 plane resulting in drumhead-like surface states when spin-orbit coupling is not considered. These results indicate that SnTaS$_2$ is a superconductor with possible topological nodal line semimetal character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا