ﻻ يوجد ملخص باللغة العربية
Topological quantum materials coupled with magnetism can provide a platform for realizing rich exotic physical phenomena, including quantum anomalous Hall effect, axion electrodynamics and Majorana fermions. However, these unusual effects typically require extreme experimental conditions such as ultralow temperature or sophisticate material growth and fabrication. Recently, new intrinsic magnetic topological insulators were proposed in MnBi2Te4-family compounds - on which rich topological effects could be realized under much relaxed experimental conditions. However, despite the exciting progresses, the detailed electronic structures observed in this family of compounds remain controversial up to date. Here, combining the use of synchrotron and laser light sources, we carried out comprehensive and high resolution angle-resolved photoemission spectroscopy studies on MnBi2Te4, and clearly identified its topological electronic structures including the characteristic gapless topological surface states. In addition, the temperature evolution of the energy bands clearly reveals their interplay with the magnetic phase transition by showing interesting differences for the bulk and surface states, respectively. The identification of the detailed electronic structures of MnBi2Te4 will not only help understand its exotic properties, but also pave the way for the design and realization of novel phenomena and applications.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synth
Through a thorough magneto-transport study of antiferromagnetic topological insulator MnBi2Te4 (MBT) thick films, a positive linear magnetoresistance (LMR) with a two-dimensional (2D) character is found in high perpendicular magnetic fields and tempe
We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrin
Magnetic topological quantum materials (TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic (AFM) topological insulator MnBi2Te4 that could reali
The combination of topology and magnetism is attractive to produce exotic quantum matters, such as the quantum anomalous Hall state, axion insulators and the magnetic Weyl semimetals. MnBi2Te4, as an intrinsic magnetic topological insulator, provides