ﻻ يوجد ملخص باللغة العربية
Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issues, multiple methods have been proposed from different communities ranging from iterative numerical linear algebra to Markov chain Monte Carlo (MCMC) approaches. Surprisingly, no complete review and comparison of these methods have been conducted. This paper aims at reviewing all these approaches by pointing out their differences, close relations, benefits and limitations. In addition to this state of the art, this paper proposes a unifying Gaussian simulation framework by deriving a stochastic counterpart of the celebrated proximal point algorithm in optimization. This framework offers a novel and unifying revisit of most of the existing MCMC approaches while extending them. Guidelines to choose the appropriate Gaussian simulation method for a given sampling problem in high dimension are proposed and illustrated with numerical examples.
In this paper we introduce a new sampling algorithm which has the potential to be adopted as a universal replacement to the Metropolis--Hastings algorithm. It is related to the slice sampler, and motivated by an algorithm which is applicable to discr
In this paper, we discuss the problem of minimizing the sum of two convex functions: a smooth function plus a non-smooth function. Further, the smooth part can be expressed by the average of a large number of smooth component functions, and the non-s
We propose an efficient way to sample from a class of structured multivariate Gaussian distributions which routinely arise as conditional posteriors of model parameters that are assigned a conditionally Gaussian prior. The proposed algorithm only req
The smoothly clipped absolute deviation (SCAD) and the minimax concave penalty (MCP) penalized regression models are two important and widely used nonconvex sparse learning tools that can handle variable selection and parameter estimation simultaneou
Recently a new algorithm for sampling posteriors of unnormalised probability densities, called ABC Shadow, was proposed in [8]. This talk introduces a global optimisation procedure based on the ABC Shadow simulation dynamics. First the general method