ﻻ يوجد ملخص باللغة العربية
We propose an efficient way to sample from a class of structured multivariate Gaussian distributions which routinely arise as conditional posteriors of model parameters that are assigned a conditionally Gaussian prior. The proposed algorithm only requires matrix operations in the form of matrix multiplications and linear system solutions. We exhibit that the computational complexity of the proposed algorithm grows linearly with the dimension unlike existing algorithms relying on Cholesky factorizations with cubic orders of complexity. The algorithm should be broadly applicable in settings where Gaussian scale mixture priors are used on high dimensional model parameters. We provide an illustration through posterior sampling in a high dimensional regression setting with a horseshoe prior on the vector of regression coefficients.
In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. T
We study a mean-field spike and slab variational Bayes (VB) approximation to Bayesian model selection priors in sparse high-dimensional linear regression. Under compatibility conditions on the design matrix, oracle inequalities are derived for the me
Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issu
Riemann manifold Hamiltonian Monte Carlo (RMHMC) has the potential to produce high-quality Markov chain Monte Carlo-output even for very challenging target distributions. To this end, a symmetric positive definite scaling matrix for RMHMC, which deri
Many processes in chemistry and physics take place on timescales that cannot be explored using standard molecular dynamics simulations. This renders the use of enhanced sampling mandatory. Here we introduce an enhanced sampling method that is based o