ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a new sampling algorithm which has the potential to be adopted as a universal replacement to the Metropolis--Hastings algorithm. It is related to the slice sampler, and motivated by an algorithm which is applicable to discrete probability distributions %which can be viewed as an alternative to the Metropolis--Hastings algorithm in this setting, which obviates the need for a proposal distribution, in that is has no accept/reject component. This paper looks at the continuous counterpart. A latent variable combined with a slice sampler and a shrinkage procedure applied to uniform density functions creates a highly efficient sampler which can generate random variables from very high dimensional distributions as a single block.
Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariat
Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov c
In this contribution, we propose a generic online (also sometimes called adaptive or recursive) version of the Expectation-Maximisation (EM) algorithm applicable to latent variable models of independent observations. Compared to the algorithm of Titt
Efficient sampling from a high-dimensional Gaussian distribution is an old but high-stake issue. Vanilla Cholesky samplers imply a computational cost and memory requirements which can rapidly become prohibitive in high dimension. To tackle these issu
Nested sampling is an efficient algorithm for the calculation of the Bayesian evidence and posterior parameter probability distributions. It is based on the step-by-step exploration of the parameter space by Monte Carlo sampling with a series of valu