ﻻ يوجد ملخص باللغة العربية
Studies of fully-reconstructed jets in heavy-ion collisions aim at extracting thermodynamical and transport properties of hot and dense QCD matter. Recently, a plethora of new jet substructure observables have been theoretically and experimentally developed that provide novel precise insights on the modifications of the parton radiation pattern induced by a QCD medium. This report, summarizing the main lines of discussion at the 5th Heavy Ion Jet Workshop and CERN TH institute Novel tools and observables for jet physics in heavy-ion collisions in 2017, presents a first attempt at outlining a strategy for isolating and identifying the relevant physical processes that are responsible for the observed medium-induced jet modifications. These studies combine theory insights, based on the Lund parton splitting map, with sophisticated jet reconstruction techniques, including grooming and background subtraction algorithms.
I look at the renormalization of the medium structure function and a medium induced jet function in a factorized cross section for jet substructure observables in Heavy Ion collisions. This is based on the formalism developed in cite{Vaidya:2020lih},
We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of
The observed strong suppression of heavy flavored hadrons produced with high $p_T$, is caused by final state interactions with the created dense medium. Vacuum radiation of high-pT heavy quarks ceases at a short time scale, as is confirmed by pQCD ca
Transverse momentum broadening and energy loss of a propagating parton are dictated by the space-time profile of the jet transport coefficient $hat q$ in a dense QCD medium. The spatial gradient of $hat q$ perpendicular to the propagation direction c
Jets in the vacuum correspond to multi-parton configurations that form via a branching process sensitive to the soft and collinear divergences of QCD. In heavy-ion collisions, energy loss processes that are stimulated via interactions with the medium